Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 524(3): 629-635, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32029275

RESUMO

AIMS: Endothelial progenitor cells (EPCs) are widely accepted to be applied in ischemic diseases. However, the therapeutic potency is largely impeded because of its inviability in these ischemic conditions. Autophagy is recognized to be vital in cell activity. Therefore, we explore the role and the mechanism of autophagy in ischemic EPCs. METHODS AND RESULTS: We applied 7d-cultured bone marrow EPCs to investigate the autophagy status under the oxygen and glucose deprivation (OGD) conditions in vitro, mimicking the in-vivo harsh ischemia and anoxia microenvironment. We found increased EPC apoptosis, accompanied by an impaired autophagy activation. Intriguingly, mTOR inhibitor Rapamycin was incapable to reverse this damped autophagy and EPC damage. We further found that autophagy pathway downstream Vps34-Beclin1-Atg14 complex assembly and activity were impaired in OGD conditions, and an autophagy-inducing peptide Tat-Beclin1 largely recovered the impaired complex activity and attenuated OGD-stimulated EPC injury through restoring autophagy activation. CONCLUSIONS: The present study discovered that autophagy activation is inhibited when EPCs located in the ischemia and anoxia conditions. Restoration of Vps34 complex activity obtains sufficient autophagy, thus promoting EPC survival, which will provide a potential target and advance our understanding of autophagy manipulation in stem cell transplantation.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Isquemia/patologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Glucose/deficiência , Masculino , Camundongos Endogâmicos C57BL , Oxigênio , Sirolimo/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
2.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738629

RESUMO

Modulating the biological status of endothelial progenitor cells (EPCs), such as function and survival, is essential for therapeutic angiogenesis in ischemic vascular disease environments. This study aimed to explore the role and molecular mechanisms underlying Netrin­1 in the viability and angiogenic function of EPCs. EPCs were isolated from the bone barrow of adult C57/BL6 mice. The apoptosis and various functions of EPCs were analyzed in vitro by manipulating the expression of Netrin­1. The TUNEL assay was performed to detect apoptotic EPCs. Cell migration and tube formation assays were performed to detect EPC function. Trypan blue staining was performed to detect cell viability. Western blot analysis was performed to detect the protein expression levels of Netrin­1, CD146 and apoptotic factors. Quantitative PCR analysis was performed to detect the expression levels of Netrin­1 receptors. The results demonstrated that treatment with exogenous Netrin­1 promoted EPC migration and tube formation, whereas transfection with small interfering (si)RNA targeting Netrin­1 exhibited the opposite effects. Exogenous Netrin­1 protected EPCs from hypoxia­induced apoptosis, whereas the interruption of endogenous Netrin­1 enhancement under hypoxia by Netrin­1­siRNA exacerbated the apoptosis of EPCs. Furthermore, CD146, one of the immunoglobulin receptors activated by Netrin­1, was screened for in the present study. Results demonstrated that CD146 did not participate in Netrin­1­promoted EPC function, but mediated the anti­apoptotic effects of Netrin­1 in EPCs. In conclusion, Netrin­1 enhanced the angiogenic function of EPCs and alleviated hypoxia­induced apoptosis, which was mediated by CD146. This biological function of Netrin­1 may provide a potential therapeutic option to promote EPCs for the treatment of ischemic vascular diseases.


Assuntos
Apoptose/fisiologia , Netrina-1/metabolismo , Animais , Antígeno CD146/metabolismo , Antígeno CD146/fisiologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/fisiologia , Expressão Gênica/genética , Hipóxia/metabolismo , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Netrina-1/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
Front Pharmacol ; 11: 594038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584271

RESUMO

Previous studies have indicated that α1D/1A antagonist naftopidil (NAF) suppresses prostate growth by decreasing cell proliferation without affecting apoptosis and prostate volume in benign prostatic hyperplasia (BPH). A NAF-derived α1D/1A antagonist 1- benzyl-N-(3-(4-(2-methoxyphenyl) piperazine-1-yl) propyl)-1H-indole-2- carboxamide (HJZ-12) has been reported from our laboratory, which exhibits high subtype-selectivity to both α1D- and α1A- AR (47.9- and 19.1- fold, respectively) with respect to a1B-AR in vitro. However, no further study was conducted. In the present study, a pharmacological evaluation of HJZ-12 in BPH was performed on an estrogen/androgen-induced rat BPH model and human BPH-1 cell line. In vivo, HJZ-12 exhibited better performance than NAF in preventing the progression of rat prostatic hyperplasia by not only decreasing prostate weight and proliferation (similar to NAF) but also, shrinking prostate volume and inducing prostate apoptosis (different from NAF). In vitro, HJZ-12 exhibited significant cell viability inhibition and apoptotic induction in BPH-1 cell line, without presenting cell anti-proliferation properties. Intriguingly, the role of HJZ-12 on cell viability and apoptosis was an α1-independent action. Furthermore, RNA-Seq analysis was applied to screen out six anti-apoptotic genes (Bcl-3, B-lymphoma Mo-MLV insertion region 1 [Bmi-1], ITGA2, FGFR3, RRS1, and SGK1). Amongst them, Bmi-1 was involved in the apoptotic induction of HJZ-12 in BPH-1. Overall, HJZ-12 played a remarkable role in preventing the progression of prostatic hyperplasia through α1-independent apoptotic induction, indicating that it will be a multi-target effective candidate for BPH treatment.

4.
Front Pharmacol ; 11: 561306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041800

RESUMO

AIMS: SUMOylation is a post-translational modification that plays a crucial role in the cellular stress response. We aimed to demonstrate whether and how the SUMO E2 conjugation enzyme Ubc9 affects acute myocardial ischemic (MI) injury. METHODS AND RESULTS: Adenovirus expressing Ubc9 was administrated by multipoint injection in the border zone of heart immediately after MI in C57BL/6 mice. Neonatal rat cardiomyocytes (NRCMs) were also infected, followed by oxygen and glucose deprivation (OGD). In vivo, Ubc9 adenovirus-injected mice showed decreased cardiomyocyte apoptosis, reduced myocardial fibrosis, and improved cardiac function post-MI. In vitro, overexpression of Ubc9 decreased cardiomyocyte apoptosis, whereas silence of Ubc9 showed the opposite results during OGD. We next found that Ubc9 significantly decreased the accumulation of autophagy marker p62/SQSTM, while the LC3 II level hardly changed. When in the presence of bafilomycin A1 (BAF), the Ubc9 adenovirus plus OGD group presented a higher level of LC3 II and GFP-LC3 puncta than the OGD group. Moreover, the Ubc9 adenovirus group displayed increased numbers of yellow plus red puncta and a rising ratio of red to yellow puncta on the mRFP-GFP-LC3 fluorescence assay, indicating that Ubc9 induces an acceleration of autophagic flux from activation to degradation. Mechanistically, Ubc9 upregulated SUMOylation of the core proteins Vps34 and Beclin1 in the class III phosphatidylinositol 3-kinase (PI3K-III) complexes and boosted the protein assembly of PI3K-III complex I and II under OGD. Moreover, the colocalization of Vps34 with autophagosome marker LC3 or lysosome marker Lamp1 was augmented after Ubc9 overexpression, indicating a positive effect of Ubc9-boosted protein assembly of the PI3K-III complexes on autophagic flux enhancement. CONCLUSIONS: We uncovered a novel role of Ubc9 in protecting cardiomyocytes from ischemic stress via Ubc9-induced SUMOylation, leading to increased PI3K-III complex assembly and autophagy-positioning. These findings may indicate a potential therapeutic target, Ubc9, for treatment of myocardial ischemia.

5.
Eur J Pharmacol ; 870: 172817, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31756334

RESUMO

Benign prostatic hyperplasia (BPH) is a common disorder of the urinary system in aging men. 2-(1H-indol-3-yl)-N-[3-(4-(2-methoxyphenyl) piperazinyl) propyl] acetamide (HJZ-3), which is derived from naftopidil, exhibited 97.7- and 64.6-fold greater inhibitory effects for a1D adrenoceptor than for a1B- and a1A-adrenoceptors in vitro, respectively. To investigate the therapeutic potential for treating BPH, we evaluated the pharmacological activity of HJZ-3. Specifically, we evaluated through estrogen/androgen-induced rat benign prostatic hyperplasia model in vivo. HJZ-3 effectively prevented the progression of rat prostatic hyperplasia by suppressing the increase in prostate index and reducing the quantitative analysis of the relative acinus volume, relative stroma, epithelial volume and epithelial thickness and expression of proliferating cell nuclear antigen and α-smooth muscle actin. HJZ-3 decreased α1A- and α1D-adrenoceptor protein expressions in prostate tissue. HJZ-3 is a good alternative for α1A- and α1D-adrenoceptor blocker. It may relax smooth muscle tone and relieve symptoms of BPH.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/química , Indóis/química , Naftalenos/química , Piperazinas/química , Hiperplasia Prostática/tratamento farmacológico , Receptores Adrenérgicos alfa 1/metabolismo , Actinas/genética , Actinas/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Androgênios/metabolismo , Animais , Modelos Animais de Doenças , Estrogênios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Masculino , Naftalenos/farmacologia , Piperazinas/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Próstata/efeitos dos fármacos , Ratos Sprague-Dawley
6.
Int J Mol Med ; 44(3): 1091-1105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31524224

RESUMO

Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type­1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh­modified diabetic EPCs (DM­EPCShh) or control DM­EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto­oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1­siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1­targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh­modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post­DMI. At 14 days post­DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Animais , Apoptose/genética , Biomarcadores , Biópsia , Células da Medula Óssea/metabolismo , Diabetes Mellitus Experimental , Ecocardiografia , Inativação Gênica , Hipóxia , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Infarto do Miocárdio/diagnóstico , RNA Interferente Pequeno/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA