Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Physiol ; 189(2): 754-771, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294544

RESUMO

Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein Z. mays TGL (ZmTGL) interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101-460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid (SA)-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the SA pathway.


Assuntos
Potyvirus , Zea mays , Lipase/genética , Lipase/metabolismo , Doenças das Plantas , Potyvirus/fisiologia , Ácido Salicílico/metabolismo , Zea mays/genética
2.
J Nat Prod ; 86(9): 2091-2101, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625387

RESUMO

In the present study, a natural product database of compounds associated with herbs traditionally verified to treat gout/hyperuricemia/arthritis was constructed. 3D-shape and docking-based virtual screening was conducted. To identify potential xanthine oxidase (XOD) inhibitors in the database, eight compounds with commercial availability were identified as high 3D-shape similarity with febuxostat (1), a known XOD inhibitor. Docking was used to further predict the possible interactions between XOD and these compounds. Moracin C (2), moracin D (3), and isoformononetin (8) exhibited higher docking scores and binding energies than other compounds. In vitro, 2 inhibited XOD with an IC50 value of 0.25 ± 0.14 µM, which is similar to that of 1 (0.16 ± 0.08 µM). In a hyperuricemic mouse model, 5-20 mg/kg 2 exhibited satisfying urate-lowering and XOD inhibitory effects. Compound 2 also exhibited antiarthritis activities. In RAW264.7 cells, 2 at 1-10 µM inhibited the expression of IL-1ß and TNF-α induced by MSU. In an acute gouty arthritis model in SD rats, 5-20 mg/kg 2 significantly alleviated the toe swelling, inflammatory response, and dysfunction disorder caused by monosodium urate (MSU). Compound 2 inhibited serum IL-1ß and TNF-α cytokines as well as reduced the expression of the NLRP3/ASC/caspase-1 inflammasome in joints. In summary, 2 was an effective compound for the treatment of hyperuricemia/gouty arthritis.


Assuntos
Artrite Gotosa , Hiperuricemia , Camundongos , Ratos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Ácido Úrico/efeitos adversos , Inibidores Enzimáticos
3.
J Mol Cell Cardiol ; 170: 100-114, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35728350

RESUMO

BACKGROUND: Aortic dissection (AD) is a lethal cardiac disorder and one of the most concerning cardiovascular diseases (CVDs). Increasing evidence indicates that human aortic vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of AD, especially related to phenotypic transformation. And notablely, the development of AD is also accompanied by inflammation. METHODS: By using quantitative real-time PCR and fluorescence in situ hybridization (FISH), we detected the expression levels of miR-564 in vitro and in vivo. The effects of miR-564 proliferation and migration were investigated in VSMCs. The downstream targets of miR-564 were found by bioinformatics analyse, and verified in the regulation on VSMCs. An AD murine model was constructed and clinical evaluation was performed to explore the critical roles of miR-564 in vivo. At the same time, the level of inflammation was detected using quantitative real-time PCR and immunofluorescence. RESULTS: Overexpression of miR-564 inhibited cell proliferation and migration, as well as phenotype switch, with or without platelet-derived growth factor BB (PDGF-BB) treatment, whereas downregulation of miR-564 led to opposite results. Mechanistically, miR-564 directly interacted with the target genes proto-oncogene (SKI) and neurogranin (NRGN) to regulate the biological functions of VSMCs. In particular, animal experiments demonstrated that miR-564 can alleviate the progression of AD mainly through mediating phenotypic swithing and inflammation which was consistent with clinical evaluation. CONCLUSIONS: Our study identified miR-564 as a significant molecule that attenuates AD progression by inhibiting inflammation and VSMCs proliferation, migration and phenotypic transformation, suggesting that it may be a potential therapeutic target for AD.


Assuntos
Dissecção Aórtica , MicroRNAs , Dissecção Aórtica/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Hibridização in Situ Fluorescente , Inflamação/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo
4.
Genomics ; 113(5): 3039-3049, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214628

RESUMO

Emerging evidence suggests that majority of the transfer RNA (tRNA)-derived small RNA, including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), play a significant role in the molecular mechanisms underlying some human diseases. However, expression of tRFs/tiRNAs and their potential roles in aortic dissection (AD) remain unclear. This study examined the expression characteristics and explored the functional roles of tRFs/tiRNAs in AD using RNA-sequencing, bioinformatics, real-time quantitative reverse transcription polymerase chain reaction, and loss- and gain-of-function analysis. Results revealed that a total of 41 tRFs/tiRNAs were dysregulated in the AD group compared to the control group. Among them, 12 were upregulated and 29 were downregulated (fold change≥1.5 and p < 0.05). RT-qPCR results revealed that expressions of tRF-1:30-chrM.Met-CAT was significantly upregulated, while that of tRF-54:71-chrM.Trp-TCA and tRF-1:32-chrM.Cys-GCA were notably downregulated; expression patterns were consistent with the RNA sequencing data. Bioinformatic analysis showed that a variety of related pathways might be involved in the pathogenesis of AD. Functionally, tRF-1:30-chrM.Met-CAT could facilitate proliferation, migration, and phenotype switching in vascular smooth muscle cells (VSMCs), which might serve as a significant regulator in the progression of AD. In summary, the study illustrated that tRFs/tiRNAs expressed in AD tissues have potential biological functions and may act as promising biomarkers or therapeutic targets for AD.


Assuntos
Dissecção Aórtica , RNA de Transferência , Dissecção Aórtica/genética , Biomarcadores , Biologia Computacional , Humanos , RNA de Transferência/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Cell Mol Biol (Noisy-le-grand) ; 64(6): 4-10, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808793

RESUMO

Autophagy is a conserved biological process, which is regulated by mTOR pathway and is reported to be a self-protective process of cancer cells to counteract apoptosis. Icariin is an active flavonoid that is reported to inhibit autophagy. In this study, we investigated whether Icariin could induce a reduction of cell proliferation by inhibiting autophagy. SKVCR cells, which are resistant to vincristine, were used for the investigation. We used CCK8 test and flow cytometry assay to study the effects of Icariin on cell proliferation, cell apoptosis and cell circle. We performed transmission electron microscope (TEM), immunohistochemical assay and western blotting assay to study the level of autophagy after Icariin treatment. Finally, we investigated whether the mTOR pathway is a target of Icariin by using mTOR inhibitor rapamycin and detected autophagy and apoptosis via flow cytometry assay, TEM, immunohistochemical assay and western blotting assay. Decreased proliferation and increased apoptosis was observed after Icariin treatment in SKVCR cells, together with decreased level of autophagy. Application of rapamycin could reverse the anti-autophagic and pro- apoptotic effect of Icariin. Icariin can inhibit autophagy and promote apoptosis in SKVCR cells by activating mTOR signal pathway. Icariin attenuates tumorigenesis by inhibiting autophagy and inducing apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Proteínas de Neoplasias/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Terapia de Alvo Molecular , Sirolimo/farmacologia , Vincristina/farmacologia
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 49(4): 530-534, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30378304

RESUMO

OBJECTIVE: To explore the effects of icariin on the proliferation and apoptosis abilities of human ovarian cancer cells SKOV3 and multi-drug resistant SKVCR cells. METHODS: Human ovarian cancer cells SKOV3 and multi-drug resistant SKVCR cells were treated with various concentrations of icariin. The inhibitory concentration and the half maximal inhibitory concentration were detected by CCK8 kit. The proliferation and apoptosis abilities of SKOV3 and SKVCR cells were measured by flow cytometry. The migration and invasion abilities of SKOV3 and SKVCR cells were evaluated by Transwell assays. The protein expression level of Caspase-3 was detected by Western blot analysis. RESULTS: Icariin significantly suppressed the proliferation abilities of SKOV3 and SKVCR cells in a dose-dependent manner at variant levels from 5-100 µg/mL. SKOV3 and SKVCR cells were treated with 19.5 µg/mL icariin and 48.4 µg/mL icariin (0.8×IC50) for 48 h, respectively. The results showed that the cell proliferation, migration and invasion abilities were markedly decreased comparing with control group, and the apoptosis rate was significantly increased as compared with control group (P<0.05). Western blot results indicated that icariin significantly increased the protein expression level of caspase-3 in SKOV3 and SKVCR cells (P<0.05). CONCLUSION: Icariin suppressed the proliferation, migration and invasion abilities of human ovarian cancer cells. Increasing expression of Caspase-3 might be the mechanism of its enhancement of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/patologia
7.
J Environ Sci (China) ; 41: 81-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969053

RESUMO

As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale.


Assuntos
Biodiversidade , Fungos/classificação , Campos de Petróleo e Gás/microbiologia , China , DNA Fúngico/genética , Fungos/genética , Mineração , Filogenia , Análise de Sequência de DNA
8.
Med Sci Monit ; 21: 3129-35, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26474031

RESUMO

BACKGROUND: High-density lipoprotein (HDL) consists of heterogeneous particles with a variety of structures and functions. Its role in atherosclerosis has been gradually recognized. Studies have shown dysfunction of small HDL in patients with coronary artery disease (CAD). Monocytes play an important role in atherosclerosis, which can be divided into 3 subgroups based on the expression of surface markers CD14 and CD16. This study aimed to investigate the association between HDL and monocyte subsets in CAD patients. MATERIAL AND METHODS: A total of 90 patients with stable CAD were selected in this study. Monocytes were divided into classical monocytes (CM, CD14++CD16-), intermediate monocytes (IM, CD14++CD16+), and non-classical monocytes (NCM, CD14+CD16++). HDL components in serum were determined by high-resolution polyacrylamide gel electrophoresis (detected by Quantimetrix HDL Lipoprint system, referring to HDL subfractions analysis: A new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia). RESULTS: Serum level of small HDL was positively correlated with circulating proinflammatory NCM (r=0.30; p=0.004), negatively correlated with CM, and not correlated with IM. We also found that disease severity was not associated with diabetes mellitus, glycosylated hemoglobin, hypertension, smoking history, or statin dosage. CONCLUSIONS: Our study confirmed that small HDL level is associated with an increase in NCM and a decrease in CM, suggesting the proinflammatory relationship between small HDL and intrinsic immune function during the progression of stable CAD.


Assuntos
HDL-Colesterol/sangue , Doença das Coronárias/sangue , Regulação da Expressão Gênica , Monócitos/citologia , Idoso , Aterosclerose/sangue , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas Ligadas por GPI/sangue , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Humanos , Interleucina-10/sangue , Interleucina-6/sangue , Lipídeos/sangue , Receptores de Lipopolissacarídeos/sangue , Fator Estimulador de Colônias de Macrófagos/sangue , Masculino , Pessoa de Meia-Idade , Receptores de IgG/sangue
9.
J Biol Chem ; 287(23): 19599-609, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22528486

RESUMO

Nucleophosmin (NPM1/B23) and the activating transcription factor 5 (ATF5) are both known to subject to cell type-dependent regulation. NPM1 is expressed weakly in hepatocytes and highly expressed in hepatocellular carcinomas (HCC) with a clear correlation between enhanced NPM1 expression and increased tumor grading and poor prognosis, whereas in contrast, ATF5 is expressed abundantly in hepatocytes and down-regulated in HCC. Re-expression of ATF5 in HCC inhibits cell proliferation. We report here that using an unbiased approach, tandem affinity purification (TAP) followed with mass spectrometry (MS), we identified NPM1 as a novel ATF5-interacting protein. Unlike many other NPM1-interacting proteins that interact with the N-terminal oligomerization domain of NPM1, ATF5 binds via its basic leucine zipper to the C-terminal region of NPM1 where its nucleolar localization signal is located. NPM1 association with ATF5, whose staining patterns partially overlap in the nucleoli, promotes ATF5 protein degradation through proteasome-dependent and caspase-dependent pathways. NPM1-c, a mutant NPM1 that is defective in nucleolar localization, failed to stimulate ATF5 polyubiquitination and was unable to down-regulate ATF5. NPM1 interaction with ATF5 displaces HSP70, a known ATF5-interacting protein, from ATF5 protein complexes and antagonizes its role in stabilization of ATF5 protein. NPM1-promoted ATF5 down-regulation diminished ATF5-mediated repression of cAMP-responsive element-dependent gene transcription and abrogates ATF5-induced G(2)/M cell cycle blockade and inhibition of cell proliferation in HCC cells. Our study establishes a mechanistic link between elevated NPM1 expression and depressed ATF5 in HCC and suggests that regulation of ATF5 by NPM1 plays an important role in the proliferation and survival of HCC.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Carcinoma Hepatocelular/metabolismo , Caspases/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fatores Ativadores da Transcrição/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspases/genética , Pontos de Checagem do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Proteínas de Neoplasias/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/genética , Nucleofosmina , Complexo de Endopeptidases do Proteassoma/genética , Elementos de Resposta/genética , Ubiquitinação/genética
10.
J Microbiol Biotechnol ; 32(6): 792-799, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35637168

RESUMO

As a vital problem in reproductive health, recurrent spontaneous abortion (RSA) affects about 1% of women. We performed this study with an aim to explore the molecular mechanism of interleukin-23 (IL-23) and find optimal or effective methods to improve RSA. First, ELISA was applied to evaluate the expressions of IL-23 and its receptor in HTR-8/SVneo cells after IL-23 treatment. CCK-8, TUNEL, wound healing and transwell assays were employed to assess the proliferation, apoptosis, migration and invasion of HTR-8/SVneo cells, respectively. Additionally, the expressions of apoptosis-, migration-, epithelial-mesenchymal transition- (EMT-) and p38 MAPK signaling pathway-related proteins were measured by western blotting. To further investigate the relationship between IL-23 and p38 MAPK signaling pathway, HTR-8/SVneo cells were treated for 1 h with p38 MAPK inhibitor SB239063, followed by a series of cellular experiments on proliferation, apoptosis, migration and invasion, as aforementioned. The results showed that IL-23 and its receptors were greatly elevated in IL-23-treated HTR-8/SVneo cells. Additionally, IL-23 demonstrated suppressive effects on the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells. More importantly, the molecular mechanism of IL-23 was revealed in this study; that is to say, IL-23 inhibited the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells via activating p38 MAPK signaling pathway. In conclusion, IL-23 inhibits trophoblast proliferation, migration, and EMT via activating p38 MAPK signaling pathway, suggesting that IL-23 might be a novel target for the improvement of RSA.


Assuntos
Aborto Espontâneo , Trofoblastos , Linhagem Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Interleucina-23/efeitos adversos , Interleucina-23/metabolismo , Gravidez , Transdução de Sinais , Trofoblastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Front Plant Sci ; 12: 788963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975975

RESUMO

Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.

13.
Int J Biol Sci ; 17(13): 3413-3427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512156

RESUMO

Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.


Assuntos
Placa Aterosclerótica , RNA não Traduzido/metabolismo , Animais , Humanos , Terapia de Alvo Molecular
14.
Sci Rep ; 11(1): 7187, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785794

RESUMO

Dispersal ability is important for the introduction, establishment, and spread of alien plant species. Therefore, determination of the geographical distribution of the dispersal ability of such species, and the relationship between dispersal ability and socio-climatic factors are essential to elucidate the invasion strategies of the alien plant species. Analytic hierarchy process and inventory, risk rank, and dispersal mode data available on Chinese alien plant species were used to determine their dispersal ability, the geographical distribution thereof, and the relationship between socio-climatic factors and dispersal ability. High-risk alien plant species had a higher natural dispersal ability (or several natural dispersal modes) but a lower anthropogenic dispersal ability (or few anthropogenic dispersal modes) than low-risk alien plant species. The geographical distribution of the dispersal ability of the alien plant species showed an inverse relationship with species density. Alien plant species with low dispersal ability (i.e., with fewer dispersal modes and distribution in the southeast) showed a tendency to adapt to environments with mild climates, while those with high dispersal ability (i.e., with more disposal nodes and distribution in the northwest) showed a tendency to adapt to harsh environments. It is essential for land managers and policy makers to understand the geographical distribution of the dispersal ability of alien plant species and their socio-climatic control factors to formulate strategies to control the natural and anthropogenic dispersal of such plants.

15.
Mol Ther Nucleic Acids ; 26: 295-306, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513311

RESUMO

Accumulating evidence shows that tRNA-derived fragments are a novel class of functional small non-coding RNA; however, their roles in aortic dissection (AD) are still unknown. In this study, we found that 5'-tiRNA-Cys-GCA was significantly downregulated in human and mouse models of aortic dissection. The abnormal proliferation, migration, and phenotypic transition of vascular smooth muscle cells (VSMCs) played a crucial role in the initiation and progression of aortic dissection, with 5'-tiRNA-Cys-GCA as a potential phenotypic switching regulator, because its overexpression inhibited the proliferation and migration of VSMCs and increased the expression of contractile markers. In addition, we verified that signal transducer and activator of transcription 4 (STAT4) was a direct downstream target of 5'-tiRNA-Cys-GCA. We found that the STAT4 upregulation in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs, which promoted cell proliferation, migration, and phenotypic transformation, was reversed by 5'-tiRNA-Cys-GCA. Furthermore, 5'-tiRNA-Cys-GCA treatment reduced the incidence and prevented the malignant process of angiotensin II- and ß-aminopropionitrile-induced AD in mice. In conclusion, our findings reveal that 5'-tiRNA-Cys-GCA is a potential regulator of the AD pathological process via the STAT4 signaling pathway, providing a novel clinical target for the development of future treatment strategies for aortic dissection.

16.
Int J Oncol ; 54(6): 1933-1942, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31081049

RESUMO

Icariin is a flavonoid derived from Epimedium sagittatum, and has a wide range of biological and pharmacological effects; however, little is known regarding its effect on drug­resistant ovarian cancer and the signal transduction pathways underlying the regulation of apoptosis and autophagy. The present study aimed to investigate the re­sensitization effects of icariin exerted on an ovarian cancer cell line. Autophagy was analyzed in a SKVCR cell line that had been treated with icariin. We investigated the sensitivity of SKVCR cells to cisplatin, as well as the effects of an autophagy agonist (rapamycin) on autophagy, apoptosis, and the protein kinase B (AKT) signaling pathway. Finally, the mechanism underlying the effects of autophagy­related (ATG) protein ATG5 overexpression on autophagy, apoptosis and AKT signaling in SKVCR cells were determined. The results revealed that treatment with icariin inhibited cell viability and autophagy, but promoted G0/G1 phase cell cycle arrest and apoptosis as determined by Cell Counting Kit­8, immunofluorescence and flow cytometry assays, respectively. Icariin reduced the resistance of SKVCR cells to cisplatin in vitro by inducing G1/S cell cycle transition, apoptosis and inhibiting autophagy. Furthermore, enhanced autophagy induced by rapamycin treatment or overexpression of ATG5 partially reversed the effect of icariin on cisplatin resistance and autophagy in SKVCR cells. At the molecular level, rapamycin treatment or overexpression of ATG5 reversed the effects of icariin on the expression of autophagy­associated proteins, including microtubule­associated protein 1 light chain 3ß, Beclin­1, ATG5 and p62, and the AKT/mammalian target of rapamycin (mTOR) pathway. Collectively, our results suggested that icariin enhances the chemosensitivity of SKVCR cells by suppressing autophagy via activation of the AKT/mTOR signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Arch Med Sci ; 15(1): 152-164, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30697266

RESUMO

INTRODUCTION: The renin-angiotensin system is associated with blood pressure regulation, inflammation, oxidative stress and insulin resistance. It can decrease intracellular oxidative stress. Stimulation with H2O2 leads to increased oxidative stress and activation of the AKT/mTOR pathway. However, the role of renin-angiotensin system inhibitors in oxidative stress-induced endothelial cell dysfunction and H2O2-induced AKT activation remains unclear. MATERIAL AND METHODS: Human coronary artery endothelial cells (HCAECs) were used. The cells were treated with H2O2, captopril, the AKT inhibitor MK-2206, and the AKT activator SC79, either separately, or in combination. p53 and ICAM-1 expression, and p-eNOS, p-Akt and mTOR activation were measured by Western blot. Cell viability was assessed by MTT assay. Levels of reactive oxygen species (ROS) were assayed by flow cytometry. Proliferation was monitored by BrdU labeling, while cell migration and invasion were determined by wound healing and Transwell assays, respectively. RESULTS: The renin-angiotensin system inhibitor captopril reversed H2O2-induced oxidative stress and apoptosis in HCAECs. Co-treatment with captopril and the AKT inhibitor MK-2206 reduced the H2O2-induced P53 and ICAM-1 protein expression (p < 0.05). The proliferation, migration and invasion of HCAECs were significantly enhanced by co-treatment with captopril and MK-2206 (p < 0.05). CONCLUSIONS: The study revealed the protective effect of captopril against H2O2-induced endothelial cell dysfunction through the AKT/mTOR pathway, and its enhancement of cell survival. These findings provide new insights into the protective effects of captopril and novel therapeutic approaches to treatment of cardiovascular disease.

18.
Front Genet ; 10: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838018

RESUMO

Objective: Abnormal proliferation or migration of vascular smooth muscle cells (VSMCs) can lead to vessel lesions, resulting in atherosclerosis and in stent-restenosis (IRS). The purpose of our study was to establish the role of miR-378a-5p and its targets in regulating VSMCs function and IRS. Methods: EdU assays and Cell Counting Kit-8 (CCK-8) assays were applied to evaluate VSMCs proliferation, wound healing assays and transwell assays were applied to assess cells migration. Furthermore, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to investigate the expression level of miR-378a-5p IRS patients and healthy individuals. Target genes were predicted using Target Scan and miRanda software, and biological functions of candidate genes were explored through bioinformatics analysis. Moreover, RNA-binding protein immunoprecipitation (RIP) was carried out to analyze the miRNAs interactions with proteins. We also used Immunofluorescence (IF) and fluorescence microscopy to determine the binding properties, localization and expression of miR-378a-5p with downstream target CDK1. Results: The expression of miR-378a-5p was increased in the group with stent restenosis compared with healthy people, as well as in the group which VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB) compared with NCs. MiR-378a-5p over-expression had significantly promoted proliferative and migratory effects, while miR-378a-5p inhibitor suppressed VSMC proliferation and migration. CDK1 was proved to be the functional target of miR-378a-5p in VSMCs. Encouragingly, the expression of miR-378a-5p was increased in patients with stent restenosis compared with healthy people, as well as in PDGF-BB-stimulated VSMCs compared with control cells. Furthermore, co-transfection experiments demonstrated that miR-378a-5p over-expression promoted proliferation and migration of VSMCs specifically by reducing CDK1 gene expression levels. Conclusion: In this investigatory, we concluded that miR-378a-5p is a critical mediator in regulating VSMC proliferation and migration by targeting CDK1/p21 signaling pathway. Thereby, interventions aimed at miR-378a-5p may be of therapeutic application in the prevention and treatment of stent restenosis.

20.
Cardiovasc Ther ; 36(4): e12436, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797660

RESUMO

Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.


Assuntos
Aterosclerose/terapia , Vasos Sanguíneos/metabolismo , Angiopatias Diabéticas/terapia , Terapia Genética/métodos , RNA não Traduzido/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Vasos Sanguíneos/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Placa Aterosclerótica , RNA não Traduzido/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA