Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 827-836, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150270

RESUMO

Heterogeneous Fenton-like catalysis is a widely used method for the degradation of organic pollutants. However, it still has some limitations such as low activity in the neutral condition, low conversion rates of metals with different valence states, and potential secondary metal pollution. In this study, a Fenton-like nanocatalyst was first created by generating ultrasmall copper nanoclusters (Cu NCs) on the surface of hydroxyapatite (HAp) through a process of doping followed by modification. This resulted in the formation of a composite nanocatalyst known as Cu NCs/HAp. With the help of hydrogen peroxide (H2O2), Cu NCs/HAp exhibits an outstanding Fenton-like catalytic performance by efficiently degrading organic dyes such as methylene blue under mild neutral conditions. The removal rate can reach over 83% within just 30 min, demonstrating ideal catalytic universality and stability. The improved Fenton-like catalytic performance of Cu NCs/HAp can be ascribed to the synergistic effect of the multivalent Cu species through two simultaneous reaction pathways. During route I, the embedded Cu NCs with a core-shell Cu0/Cu+ structure can undergo sequential oxidation to form Cu2+, which continuously activates H2O2 to generate hydroxyl radicals (•OH) and singlet oxygen (1O2). In route II, Cu2+ produced from route I and initially adsorbed on the surface of HAp can be reduced by H2O2, thus regenerating Cu+ species for route I and achieving a closed-loop reaction. This work has confirmed that Cu NCs loaded on HAp may be an alternative Fenton-like catalyst for degradation of organic pollutants and environmental remediation, opening up new avenues for potential applications of other Cu NCs in future water pollution control.

2.
Inorg Chem ; 63(11): 4807-4812, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38446174

RESUMO

Two new congruently melting Pb-containing halogen silicates, Pb3[O10Pb20](SiO4)4X10 (X = Cl, Br), have been synthesized using a high-temperature solution method. Their crystal structures were determined by single-crystal X-ray diffraction, and both compounds crystallize in the orthorhombic space group Cmca. In both structures, the mirror-symmetric bilayer composed of Pb-O polyhedra is observed for the first time in Pb-containing silicates and belongs to α-PbO derivatives and is related to the Aurivillius phase. Thermal behavior analysis, UV-vis diffuse-reflectance spectroscopy, and IR spectroscopy were also performed. The Pb3[O10Pb20](SiO4)4Cl10 matrix was doped with Eu3+ ions as a dopant, and its potential application in fluorescence was confirmed from the resulting orange-red emission.

3.
J Am Chem Soc ; 142(10): 4616-4620, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096982

RESUMO

Balancing the wide band gap, large second harmonic generation (SHG) response, and moderate birefringence are significant but addressable challenges for designing nonlinear optical (NLO) materials. Based on the band-gap engineering in perovskite solar cell materials, we have successfully synthesized a new fluorotellurite, BaF2TeF2(OH)2, which exhibits a pseudo-Aurivillius structure and crystallizes in a noncentrosymmetric and polar space group Pmn21. The physical property measurements show that this material can effectively balance the requirements among the short UV absorption edge (∼205 nm), large SHG response (∼3 × KDP) and moderate birefringence (∼0.078@350-700 nm) and is a promising ultraviolet NLO crystal.

4.
Chem Commun (Camb) ; 56(52): 7104-7107, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32458872

RESUMO

Introduction of Pb2+ cations in silicate systems generates a new compound, PbSrSiO4, which exhibits excellent properties, including a strong second harmonic generation response (∼5.8 × KDP), a short UV cut-off edge (240 nm) and moderate birefringence (0.053@1064 nm). These results suggest that PbSrSiO4 is a promising UV NLO material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA