Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599169

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Assuntos
Inflamação , Ácidos Nucleicos , Humanos , Imunidade Inata , Receptores Imunológicos , Alarminas
2.
Nature ; 629(8013): 893-900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632402

RESUMO

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Gasderminas , Inflamação , Animais , Feminino , Humanos , Masculino , Camundongos , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Barreira Hematoencefálica/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Caspases Iniciadoras/metabolismo , Dependovirus , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Gasderminas/antagonistas & inibidores , Gasderminas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Klebsiella pneumoniae/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Piroptose , Sepse/metabolismo , Sepse/patologia , Sepse/microbiologia , Análise de Célula Única , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
3.
PLoS Genet ; 20(1): e1010929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271473

RESUMO

Genome-wide association studies (GWASs) have achieved remarkable success in associating thousands of genetic variants with complex traits. However, the presence of linkage disequilibrium (LD) makes it challenging to identify the causal variants. To address this critical gap from association to causation, many fine-mapping methods have been proposed to assign well-calibrated probabilities of causality to candidate variants, taking into account the underlying LD pattern. In this manuscript, we introduce a statistical framework that incorporates expression quantitative trait locus (eQTL) information to fine-mapping, built on the sum of single-effects (SuSiE) regression model. Our new method, SuSiE2, connects two SuSiE models, one for eQTL analysis and one for genetic fine-mapping. This is achieved by first computing the posterior inclusion probabilities (PIPs) from an eQTL-based SuSiE model with the expression level of the candidate gene as the phenotype. These calculated PIPs are then utilized as prior inclusion probabilities for risk variants in another SuSiE model for the trait of interest. By prioritizing functional variants within the candidate region using eQTL information, SuSiE2 improves SuSiE by increasing the detection rate of causal SNPs and reducing the average size of credible sets. We compared the performance of SuSiE2 with other multi-trait fine-mapping methods with respect to power, coverage, and precision through simulations and applications to the GWAS results of Alzheimer's disease (AD) and body mass index (BMI). Our results demonstrate the better performance of SuSiE2, both when the in-sample linkage disequilibrium (LD) matrix and an external reference panel is used in inference.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla/métodos , Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Proc Natl Acad Sci U S A ; 121(11): e2318365121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451950

RESUMO

To construct a stochastic version of [R. J. Barro, J. Polit. Econ. 87, 940-971 (1979)] normative model of tax rates and debt/GDP dynamics, we add risks and markets for trading them along lines suggested by [K. J. Arrow, Rev. Econ. Stud. 31, 91-96 (1964)] and [R. J. Shiller, Creating Institutions for Managing Society's Largest Economic Risks (OUP, Oxford, 1994)]. These modifications preserve Barro's prescriptions that a government should keep its debt-gross domestic product (GDP) ratio and tax rate constant over time and also prescribe that the government insure its primary surplus risk by selling or buying the same number of shares of a Shiller macro security each period.


Assuntos
Governo , Produto Interno Bruto
5.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753508

RESUMO

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Assuntos
Agricultura , China , Agricultura/métodos , Fazendeiros , Humanos , Produtos Agrícolas/crescimento & desenvolvimento , Comportamento Cooperativo , Zea mays/crescimento & desenvolvimento , Desenvolvimento Sustentável , Conservação dos Recursos Naturais/métodos , Triticum/crescimento & desenvolvimento , Produção Agrícola/métodos
6.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980374

RESUMO

Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.


Assuntos
Interação Gene-Ambiente , Desequilíbrio de Ligação , Fenótipo , Humanos , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
7.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253182

RESUMO

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Assuntos
Anexina A2 , Microglia , Traumatismo por Reperfusão , Animais , Camundongos , Anexina A2/metabolismo , Microglia/metabolismo , Multiômica , NF-kappa B/metabolismo , Proteômica , Traumatismo por Reperfusão/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(51): e2303075120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100414

RESUMO

Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.


Assuntos
Tecido Adiposo , Resistência à Insulina , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
9.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39108204

RESUMO

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Assuntos
Antígeno CTLA-4 , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Masculino , Interleucina-17/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Diferenciação Celular , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/etiologia
10.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351611

RESUMO

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional , Terapia Genética
11.
Cell Mol Life Sci ; 81(1): 295, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977508

RESUMO

Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.


Assuntos
Hepatócitos , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Fatores de Transcrição , Animais , Humanos , Masculino , Camundongos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Furanos , Gasderminas , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos/farmacologia , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Nucleares , Ácido Palmítico/farmacologia , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Piroptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
12.
Nano Lett ; 24(6): 2057-2062, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38285001

RESUMO

Hyperbolic polaritons have been attracting increasing interest for applications in optoelectronics, biosensing, and super-resolution imaging. Here, we report the in-plane hyperbolic exciton polaritons in monolayer black-arsenic (B-As), where hyperbolicity arises strikingly from two exciton resonant peaks. Remarkably, the presence of two resonances at different momenta makes overall hyperbolicity highly tunable by strain, as the two exciton peaks can be merged into the same frequency to double the strength of hyperbolicity as well as light absorption under a 1.5% biaxial strain. Moreover, the frequency of the merged hyperbolicity can be further tuned from 1.35 to 0.8 eV by an anisotropic biaxial strain. Furthermore, electromagnetic numerical simulation reveals a strain-induced hyperbolicity, as manifested in a topological transition of iso-frequency contour of exciton polaritons. The good tunability, large exciton binding energy, and strong light absorption exhibited in the hyperbolic monolayer B-As make it highly suitable for nanophotonics applications under ambient conditions.

13.
Nano Lett ; 24(22): 6743-6752, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783628

RESUMO

Lipid nanoparticles (LNPs) represent the forefront of mRNA delivery platforms, yet achieving precise delivery to specific cells remains a challenge. The current targeting strategies complicate the formulation and impede the regulatory approval process. Here, through a straightforward regulation of helper lipids within LNPs, we introduce an engineered LNP designed for targeted delivery of mRNA into hepatocytes for metabolic dysfunction-associated fatty liver disease (MAFLD) treatment. The optimized LNP, supplied with POPC as the helper lipid, exhibits a 2.49-fold increase in mRNA transfection efficiency in hepatocytes compared to that of FDA-approved LNPs. CTP:phosphocholine cytidylyltransferase α mRNA is selected for delivery to hepatocytes through the optimized LNP system for self-calibration of phosphatidylcholine levels to prevent lipid droplet expansion in MAFLD. This strategy effectively regulates lipid homeostasis, while demonstrating proven biosafety. Our results present a mRNA therapy for MAFLD and open a new avenue for discovering potent lipids enabling mRNA delivery to specific cells.


Assuntos
Hepatócitos , Nanopartículas , Fosfatidilcolinas , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Hepatócitos/metabolismo , Fosfatidilcolinas/química , Nanopartículas/química , Animais , Transfecção/métodos , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Fígado Gorduroso/terapia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Lipídeos/química , Técnicas de Transferência de Genes , Camundongos , Lipossomos
14.
Nano Lett ; 24(21): 6344-6352, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38687224

RESUMO

Anisotropic two-dimensional materials present a diverse range of physical characteristics, making them well-suited for applications in photonics and optoelectronics. While mechanical properties play a crucial role in determining the reliability and efficacy of 2D material-based devices, the fracture behavior of anisotropic 2D crystals remains relatively unexplored. Toward this end, we herein present the first measurement of the anisotropic fracture toughness of 2D Ta2NiSe5 by microelectromechanical system-based tensile tests. Our findings reveal a significant in-plane anisotropic ratio (∼3.0), accounting for crystal orientation-dependent crack paths. As the thickness increases, we observe an intriguing intraplanar-to-interplanar transition of fracture along the a-axis, manifesting as stepwise crack features attributed to interlayer slippage. In contrast, ruptures along the c-axis surprisingly exhibit persistent straightness and smoothness regardless of thickness, owing to the robust interlayer shear resistance. Our work affords a promising avenue for the construction of future electronics based on nanoribbons with atomically sharp edges.

15.
Genesis ; 62(2): e23592, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38587195

RESUMO

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Assuntos
Galinhas , Células-Tronco Mesenquimais , Animais , Embrião de Galinha , Membrana Corioalantoide , Diferenciação Celular/fisiologia , Células Cultivadas
16.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822457

RESUMO

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Assuntos
Adenocarcinoma de Pulmão , Ciclo do Ácido Cítrico , Recombinação Homóloga , Neoplasias Pulmonares , Feminino , Humanos , Masculino , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Reprogramação Metabólica , Prognóstico , Microambiente Tumoral , Pessoa de Meia-Idade , Idoso
17.
J Am Chem Soc ; 146(6): 3900-3909, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294833

RESUMO

Enantioselective recognition of functional organic molecules in water is routine in nature but remains a formidable challenge for synthetic hosts. Here, we reported two pairs of chiral naphthotubes with chiral centers located in the neighborhood of the inward-directing amide groups. These naphthotubes, with a chiral twisted cavity, show highly enantioselective recognition in water to a wide scope of organic molecules (90 chiral guests). The highest enantioselectivity of 34 was achieved with neotame. Small differences between all of the noncovalent interactions shielded in the hydrophobic cavity were revealed to be responsible for the enantioselective recognition in water, which is different from the traditional views. Moreover, these hosts can differentiate the analogues of aspartame using fluorescence spectroscopy. These chiral naphthotubes have made unprecedented achievements in enantioselective recognition, providing the basis for their applications in chiral analysis and separations.

18.
J Am Chem Soc ; 146(8): 5295-5304, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363710

RESUMO

Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (|gabs|) increasing from 0.009 to 0.017 and further to 0.019, and luminescence dissymmetry factors (|glum|) rising from 0.007 to 0.013 and eventually to 0.015 for homochiral double π-helical oligomers. The disparity of magnetic transition dipole moment (m) densities in homochiral and heterochiral tetramers by time-dependent density functional theory calculations confirmed that homochiral oligomerization can maximize the total m, which is favorable for achieving ever-increasing g factors. Notably, these double π-helices exhibited exceptional photoluminescence quantum yields (ΦPL) ranging from 83 to 95%. The circularly polarized luminescence brightness (BCPL) eventually reached a remarkable 575 M-1 cm-1 for the homochiral tetramer, which is among the highest values reported for chiral small molecules. This kind of linearly extended double π-helices offers a platform for a comprehensive understanding of the mechanism behind chirality propagation and dissymmetry amplification.

19.
J Am Chem Soc ; 146(19): 13499-13508, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696816

RESUMO

Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (µ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.

20.
J Am Chem Soc ; 146(22): 15085-15095, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776232

RESUMO

The spleen emerges as a pivotal target for mRNA delivery, prompting a continual quest for specialized and efficient lipid nanoparticles (LNPs) designed to enhance spleen-selective transfection efficiency. Here we report imidazole-containing ionizable lipids (IMILs) that demonstrate a pronounced preference for mRNA delivery into the spleen with exceptional transfection efficiency. We optimized IMIL structures by constructing and screening a multidimensional IMIL library containing multiple heads, tails, and linkers to perform a structure-activity correlation analysis. Following high-throughput in vivo screening, we identified A3B7C2 as a top-performing IMIL in spleen-specific mRNA delivery via the formulated LNPs, achieving a remarkable 98% proportion of splenic transfection. Moreover, A3B7C2-based LNPs are particularly potent in splenic dendritic cell transfection. Comparative analyses revealed that A3B7C2-based LNPs achieved a notable 2.8-fold and 12.9-fold increase in splenic mRNA transfection compared to SM102 and DLin-MC3-DMA lipid formulations, respectively. Additionally, our approach yielded an 18.3-fold enhancement in splenic mRNA expression compared to the SORT method without introducing additional anionic lipids. Collectively, these IMILs highlight promising avenues for further research in spleen-selective mRNA delivery. This work offers valuable insights for the swift discovery and rational design of ionizable lipid candidates tailored for spleen-selective transfection, thereby facilitating the application of mRNA therapeutics in spleen-related interventions.


Assuntos
Imidazóis , Lipídeos , RNA Mensageiro , Baço , Baço/metabolismo , Imidazóis/química , Lipídeos/química , Lipídeos/síntese química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Animais , Camundongos , Transfecção/métodos , Nanopartículas/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA