Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925699

RESUMO

High population density alters insect prophylactic immunity, with density-dependent prophylaxis (DDP) being reported in many polyphonic insects. However, the molecular mechanism for DDP remains unclear. In current study, the role of tyramine ß-hydroxylase (Tßh) in the immune response of M. separata larvae that were subject to different rearing densities conditions was investigated. The tyramine ß-hydroxylase activity of larvae from high density treatments (10 and 30 larvae per jar) was significantly higher than that of the larvae from low density treatments (one, two, and five larvae/jar). A tyramine ß-hydroxylase (designated MsTßh) containing a 1779 bp open reading frame was identified. Multiple sequence alignment and phylogenetic analysis indicated that MsTßh was orthologous to the Tßh that was found in other lepidopterans. Elevated MsTßh expression was observed in larvae under high density (10 larvae per jar). Silencing MsTßh expression by the injection of dsRNA in larvae from the high density treatment produced a 25.1% reduction in octopamine levels, while at the same time, there was a significant decrease in phenoloxidase (PO) and lysozyme activity, total haemocyte counts, and survival against Beauveria infection 56.6%, 88.5%, 82.0%, and 55.8%, respectively, when compared to control larvae. Our findings provide the first insights into how MsTßh mediates the octopamine level, which in turn modulates the immune response of larvae under different population densities.


Assuntos
Proteínas de Insetos/imunologia , Oxigenases de Função Mista/imunologia , Mariposas/imunologia , Sequência de Aminoácidos , Animais , Beauveria/imunologia , Imunidade , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/química , Larva/genética , Larva/imunologia , Larva/microbiologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Mariposas/química , Mariposas/genética , Mariposas/microbiologia , Filogenia , Alinhamento de Sequência
2.
Artigo em Inglês | MEDLINE | ID: mdl-29377226

RESUMO

Insect immunity includes a surveillance system that detects and signals infections, coupled with hemocytic and humoral immune functions. These functions are signaled and coordinated by several biochemicals, including biogenic amines, insect cytokines, peptides, and prostaglandins (PGs). The actions of these mediators are coordinated within cells by various forms of cross-talk among the signaling systems and they result in effective reactions to infection. While this is well understood, we lack information on how immune-mediated recovery influences subsequent juvenile development in surviving insects. We investigated this point by posing the hypothesis that PG signaling is necessary for larval recovery, although the recovery imposes biological costs, registered in developmental delays and failures in surviving individuals. Here, we report that nodulation responses to infections by the bacterium, Serratia marcescens, increased over time up to 5 h postinfection, with no further nodulation; it increased in a linear manner with increasing bacterial dosages. Larval survivorship decreased with increasing bacterial doses. Treating larvae with the PG-biosynthesis inhibitor, indomethacin, led to sharply decreased nodulation reactions to infection, which were rescued in larvae cotreated with indomethacin and the PG-precursor, arachidonic acid. Although nodulation was fully rescued, all bacterial challenged larvae suffered reduced survivorship compared to controls. Bacterial infection led to reduced developmental rates in larvae, but not pupae. Adult emergence from pupae that developed from experimental larvae was also decreased. Taken together, our data potently bolster our hypothesis.


Assuntos
Prostaglandinas/metabolismo , Spodoptera/imunologia , Animais , Ácido Araquidônico , Bacteriemia/imunologia , Indometacina , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/metabolismo , Serratia marcescens , Spodoptera/crescimento & desenvolvimento , Spodoptera/metabolismo
3.
J Insect Sci ; 18(2)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718483

RESUMO

The longhorn beetle Dorysthenes paradoxus (Faldermann, 1833) (Coleoptera: Cerambycidae) is not only a serious agricultural pest but also a traditionally edible insect in China. However, no genetic information on this species has been acquired. In the present study, we report the mitochondrial genome (mitogenome) of Do. paradoxus, as the first complete mitogenome of Prioninae. The circular mitogenome of 15,922 bp encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), and it contains an A+T-rich region. This mitogenome exhibits the lowest A+T content (71.13%) but harbors the largest AT skew (0.116) among the completely sequenced Cerambycidae species. Eleven of the 13 PCGs have a typical ATN start codon, whereas COI and ND1 are tentatively designated by AAT and TTG, respectively. Only 4 of the 13 PCGs harbor a complete termination codon, and the remaining 9 possess incomplete termination codons (T or TA). Apart from tRNASer(AGN), the other 21 tRNAs can fold into a typical clover-leaf secondary structures. The Do. paradoxus A+T-rich region contains two poly-T stretches and a tandem repeat that comprises two 47-bp-long copies. Both Bayesian inference and Maximum likelihood analyses confirmed the subfamily ranks of Cerambycidae ([Prioninae + Cerambycinae] + Lamiinae) and the close relationship between Philinae and Prioninae/Cerambycinae. However, the data did not support the monophyly of Prioninae and Cerambycinae. The mitogenome presented here provides basic genetic information for this economically important species.


Assuntos
Besouros/genética , Genoma de Inseto , Genoma Mitocondrial , Animais , Filogenia
4.
J Invertebr Pathol ; 122: 6-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108136

RESUMO

There has been considerable effort made in recent years for research groups and other organizations to build up large collections of strains of Bacillus thuringiensis in the search for genes encoding novel insecticidal toxins, or encoding novel metabolic pathways. Whilst next generation sequencing allows the detailed genetic characterization of a bacterial strain with relative ease it is still not practicable for large strain collections. In this work we assess the practicability of mining a mixture of genomic DNA from a two thousand strain collection for particular genes. Using PCR the collection was screened for both a rare (cry15) toxin gene as well as a more commonly found gene (vip3A). The method was successful in identifying both a cry15 gene and multiple examples of the vip3A gene family including a novel member of this family (vip3Aj). A number of variants of vip3Ag were cloned and expressed, and differences in toxicity observed despite extremely high sequence similarity.


Assuntos
Bacillus thuringiensis/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
5.
Insects ; 15(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786860

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, seriously threatens food and cash crops. Maize, wheat, and even rice damage by FAWs have been reported in many areas of China. It is urgent to clarify the mechanism which FAWs adapt to different feeding hosts and develop effective control technologies. Two-sex life tables and 16s rDNA sequencing were used to determine the host fitness and gut microbial diversity of FAWs when fed four different food types. Considering the life history parameters, pupa weight, and nutrient utilization indexes, the host fitness of FAWs when fed different food types changed in descending order as follows: artificial diet, maize, wheat, and rice. The gut microbial composition and the diversity of FAWs when fed different food types were significantly different, and those changes were driven by low-abundant bacteria. The gut microbes of FAWs that were fed with maize had the highest diversity. The functions of the gut microbes with significant abundance differences were enriched in nutrient and vitamin metabolism and other pathways that were closely related to host adaptation. Furthermore, we identified five genera (Acinetobacter, Variovorax, Pseudomonas, Bacillus, and Serratia) and one genus (Rahnella) that were positively and negatively correlated with the host fitness, respectively. This study revealed the possible role of gut microbes in the host adaptation of FAWs.

6.
Int J Biol Macromol ; 264(Pt 2): 130778, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467221

RESUMO

High population density has been shown to alter insect prophylactic immunity. Toll-Spätzle pathway performs a key function in insect innate immune response. To determine the role of Toll and Spätzle, two main components of Toll-Spätzle pathway, in the density-dependent prophylaxis of Mythimna separata. We identified full-length cDNA encoding the Toll-1 and Spätzle-4 genes in M. separata (designed MsToll-1 and Ms Spätzle-4). Both MsToll-1 and MsSpätzle-4 were expressed throughout all developmental stages. MsToll-1 expression was highly in fat body and brain and MsSpätzle-4 was highly expressed in brain and Malpighian tubule. With increased larval density, MsToll-1 expression was markedly up-regulated. MsSpätzle-4 expression was found to be raised in larvae that were fed in high density (5 and 10 larvae per jar). Co-immunoprecipitation assays demonstrated that MsToll-1 interacted with MsSpätzle-4. Immune-related genes transcriptions were considerably reduced in high-density larvae MsToll-1 (or MsSpätzle-4) was silenced by dsRNA injection. Meanwhile, a discernible reduction in the survival rate of the larvae exposed to Bacillus thuringiensis infection with silence of MsToll-1 (or MsSpätzle-4) was observed. This study implies that prophylactic immunity was influenced by crowded larvae via modulating the Toll-Spätzle pathway in M. separata and allow for a new understanding of into density-dependent prophylaxis in insects.


Assuntos
Proteínas de Insetos , Mariposas , Animais , Larva/metabolismo , Spodoptera/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/genética , Imunidade Inata/genética
7.
Pest Manag Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775404

RESUMO

BACKGROUND: The beet webworm, Loxostege sticticalis, a worldwide pest of many crops, performs a seasonal migration, causing periodic outbreaks in Asia, Europe and North America. Although long-distance migration is well documented in China, patterns of transboundary migration among China, Russia and Mongolia are largely unknown. We performed a phase analysis of L. sticticalis periodic outbreaks among three countries based on 30 years of historical population data, analyzed the wind systems during migration over boundary regions, and traced the migratory routes in a case study of outbreaks in 2008 by trajectory simulation. RESULTS: Highly synchronized outbreak years of L. sticticalis were observed between China and Mongolia, China and eastern Siberia, China and western Siberia, Mongolia and eastern Siberia, eastern Siberia and western Siberia from 1978 to 2008, indicating possible transboundary migration between these regions. Winds at 300-600 m altitude, where adult migration usually occurs, also showed a high probability of northwestern winds in Haila'er (China), Chita (Russia) and Choybalsan (Mongolia), favoring successful adult migration from these areas to northern and northeastern China. Back trajectory analysis further showed that the first-generation adults that caused the severe outbreak of second-generation larvae in 2008 originated from eastern Siberia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. CONCLUSION: Our findings demonstrated that the source of L. sticticalis outbreaks in northern China was closely related to the outbreaks in Siberia and Mongolia via long-distance transboundary windborne migration. This information will help guide international monitoring and management strategies against this notorious pest. © 2024 Society of Chemical Industry.

8.
Arch Insect Biochem Physiol ; 82(1): 1-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047724

RESUMO

Juvenile hormone (JH) influences many aspects of insect biology, including oogenesis-flight syndrome tradeoffs between migration and reproduction. Drawing on studies of many migratory insects, we posed the hypothesis that JH influences migratory capacity and oogenesis in the rice leaf roller, Cnaphalocrocis medinalis. We treated adults moths (days 1, 2 and 3 postemergence) with the JH analog (JHA), methoprene, and then recorded the influences of JHA treatments on reproduction. JHA treatment on day 1 postemergence, but not on the other days, shortened the preoviposition period, although JHA did not influence total fecundity, oviposition period, or longevity. We infer day 1 postemergence is the JH-sensitive stage to influence reproduction. Therefore, we treated moths on day 1 postemergence with JHA and recorded flight capacity, flight muscle mass, and triacylglycerol (TAG) accumulation. JHA treatments did not influence flight speed, but led to reductions in flight durations and flight distances. At day 3 posttreatment (PT), JHA-treated females flew shorter times and less distance than the controls; JHA-treated males, however, only flew shorter times than the controls. JHA treatments led to reductions in flight muscle mass in females at days 2-3 PT and reductions in TAG content in females at day 3 PT, but, these parameters were not influenced by JHA in males. These findings strongly support our hypothesis, from which we infer that JH is a major driver in C. medinalis oogenesis-flight syndrome tradeoffs. Our data also reveal a JH-sensitive stage in adulthood during which JH influences the oocyte-flight syndrome in C. medinalis.


Assuntos
Hormônios Juvenis/metabolismo , Metoprene/metabolismo , Mariposas/fisiologia , Fatores Etários , Migração Animal , Animais , China , Feminino , Masculino , Músculos/química , Reprodução , Fatores de Tempo , Triglicerídeos/metabolismo
9.
Insects ; 14(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37623403

RESUMO

The application of green manure is crucial for achieving sustainable agriculture and animal husbandry, but pest management is often overlooked. Conducting a risk assessment for insect pests in green manure is essential. The beet webworm, Loxostege sticticalis, a polyphagous insect, is currently experiencing an outbreak in northern China, and represents a significant migratory pest. A two-sex life table and flight mill test approach was used to comprehensively evaluate the effects of three major legume green manure crops (Pisum sativam, Vicia sativa, and Vicia villosa) on the growth, development, fecundity, and flight ability of L. sticticalis in China. Our findings indicate that L. sticticalis cannot utilize V. villosa for generational development. L. sticticalis shows reduced performance on P. sativam and V. sativa compared to its suitable host Chenopodium album. However, both the population parameters (R0, r, λ, and T) and the population prediction results suggest that L. sticticalis can adapt to P. sativam and V. sativa. In the process of promoting green manure, careful consideration should be given to the selection of appropriate green manure varieties and the implementation of effective pest control measures during their planting. Our findings lay the groundwork for the promotion of green manure and implementation of an ecological management plan for L. sticticalis.

10.
Int J Biol Macromol ; 235: 123915, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36871694

RESUMO

The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.


Assuntos
Bacillus thuringiensis , Mariposas , Platelmintos , Animais , Spodoptera/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo
11.
Insect Sci ; 30(3): 650-660, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36305760

RESUMO

The oriental armyworm, Mythimna separata, is a major long-distance migratory insect pest of grain crops in China and other Asian countries. Migratory flights and reproductive behavior usually occur at night, regulated by a circadian rhythm. However, knowledge about the linkages between adult flight, reproduction, and clock genes is still incomplete. To fill this important gap in our knowledge, a clock gene (designated Msper) was identified and phylogenetic analysis indicated that the encoded protein (MsPER) was highly similar to PER proteins from other insect species. Quantitative RT-PCR assays demonstrated that significantly different spatiotemporal and circadian rhythmic accumulations of mRNA encoding MsPER occurred during development under steady 14 h : 10 h light : dark conditions. The highest mRNA accumulation occurred in adult antennae and the lowest in larvae. Msper was expressed rhythmically in adult antennae, relatively less in photophase and more entering scotophase. Injecting small interference RNA (siRNA) into adult heads effectively knocked down Msper mRNA levels within 72 h. Most siRNA-injected adults reduced their evening flight activity significantly and did not exhibit a normal evening peak of flight activity. They also failed to mate and lay eggs within 72 h. Adult mating behavior was restored to control levels by 72 h post injection. We infer that Msper is a prominent clock gene that acts in regulating adult migratory flight and mating behaviors of M. separata. Because of its influence on migration and mating, Msper may be a valuable gene to target for effective management of this migratory insect.


Assuntos
Mariposas , Animais , Spodoptera/genética , Filogenia , RNA de Cadeia Dupla , Reprodução , RNA Interferente Pequeno , RNA Mensageiro
12.
Insects ; 14(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37887793

RESUMO

Beet webworms, Loxostege sticticalis L. (Lepidoptera: Pyralidae), are one of the most destructive pest insects in northern China, and their populations outbreak periodically. Developing an indicator that defines the ending and beginning of the occurrence period cycle is urgent for the population forecast and theoretical study. The sex ratio can be a primary pathway through which species regulate population size. We measured the maximum mating potential of both females and males and the population net reproductive rate under different sex ratios (e.g., 3:1, 2:1, 1:1, 1:2, 1:3). The maximum mating frequency of males was 2.91 times that of females. The progeny contribution per mating decreased with increased mating times in males. The variation in population net reproductive rate affected by the sex ratio fits the parabolic curve analysis and peaked at 1.82 for females vs. males. Our results illustrate the quantitative connection phenomenon shown by the historical data: population outbreaks occur at a sex ratio of two or more and collapse at a sex rate lower than one. Simultaneously, the sex ratio may be utilized as a definite indicator for the beginning and end of the future occurrence cycle in the beet webworm.

13.
Insects ; 14(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132607

RESUMO

The division of labor among workers is a defining characteristic of social insects and plays a pivotal role in enhancing the competitive advantage of their colony. Juvenile hormone (JH) has long been hypothesized to be the essential driver in regulating the division of labor due to its ability to accelerate behavioral transitions in social insects, such as honeybees. The regulation of behavioral transitions by JH in the red imported fire ant (RIFA), Solenopsis invicta, a typical social pest, is unclear. Through video capture and analysis, we investigated the effects of the juvenile hormone analogue (JHA) methoprene on brood care, phototaxis behavior, and threat responsiveness of RIFA nurse workers. Our results showed that the JHA application significantly reduced the time and frequency of brood care behavior by nurse workers while increasing their walking distance and activity time in the light area. Additionally, the application of JHA made ants become excited, indicating a significant improvement in their activity level (movement distance, time, and speed). Furthermore, it was observed that the application of JHA did not affect the threat responsiveness of nurse workers towards stimuli (nestmates or non-nestmates). Our study demonstrates that the application of JHA reduced brood care behavior and enhanced phototaxis in nurse workers, which may reveal the role of JH in facilitating behavioral transitions in RIFA from intranidal tasks to extranidal activity. This study provides an experimental basis for further elucidating the mechanism underlying the division of labor in social insects.

14.
Insects ; 14(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999063

RESUMO

Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and invaders; it includes internalization and killing microbes (phagocytosis) and formation of bacterial-laden microaggregates which coalesce into nodules that are melanized and attached to body walls or organs. Nodulation can entail investing millions of hemocytes which must be replaced. We hypothesized that biologically costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae of fall armyworms, Spodoptera frugiperda, that were allowed to fever. We tested our hypothesis by infecting larvae with the Gram-negative bacterium, Serratia marcescens, placing them in thermal gradients (TGs) and recording their selected body temperatures. While control larvae selected about 30 °C, the experimental larvae selected up 41 °C. We found that 4 h fevers, but not 2, 6 or 24 h fevers, led to increased larval survival. Co-injections of S. marcescens with the prostaglandin (PG) biosynthesis inhibitor indomethacin (INDO) blocked the fevers, which was reversed after co-injections of SM+INDO+Arachidonic acid, a precursor to PG biosynthesis, confirming that PGs mediate fever reactions. These and other experimental outcomes support our hypothesis that costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae under appropriate conditions.

15.
Insects ; 13(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35886757

RESUMO

Reproduction and flight are two major adaptive strategies to cope with environmental stress in migratory insects. However, research on density-mediated flight and reproduction in the global migratory agricultural pest Spodoptera frugiperda is lacking. In this study, flight and reproductive performances in response to larval crowding were investigated in S. frugiperda. We found that larval crowding significantly reduced the pupal and body weights of S. frugiperda. Adults reared under the highest density of 30 larvae/jar had the minimum wing expansion, which was significantly smaller than that of larvae reared under solitary conditions. Larval crowding also significantly increased the pre-oviposition period (POP) and period of first oviposition (PFO) but decreased the lifetime fecundity, flight duration and flight distance. Our results showed that S. frugiperda reared under solitary conditions exhibited higher pupal and body weights and stronger reproductive and flight capacities than those reared under high-density conditions. Larval crowding did not enhance the migration propensity in S. frugiperda adults. In conclusion, larval crowding may not be a major factor affecting FAW migration due to high levels of cannibalism. These findings provide new insights into the population dynamics of S. frugiperda under larval crowding conditions.

16.
Biotechnol Biofuels Bioprod ; 15(1): 78, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831866

RESUMO

BACKGROUND: Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. RESULTS: A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL-1 and 1265.58 UL-1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL-1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography-mass spectrometry (GC-MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. CONCLUSIONS: Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the ß-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate-CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion.

17.
J Econ Entomol ; 115(1): 124-132, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34897490

RESUMO

The fall armyworm, Spodoptera frugiperda (Smith), is an invasive pest of cereal crops that now inhabits southern China year-round. Cultivation of crops unsuitable as host plants has been an effective pest management strategy for some insect pests, but the effects of green manure crops on S. frugiperda have not been investigated. An age-stage two-sex life table and tethered flight performance of S. frugiperda reared on different green manure species were obtained, and a population dynamics model established. Developmental durations of stages, survival rates, and fecundities of S. frugiperda differed significantly depending on host plant. Larvae fed Astragalus sinicus L. did not complete development. Although some larvae fed Vicia villosa Roth and Vicia sativa L. completed development, generation time was significantly prolonged, egg production was halved, and net reproductive rate decreased to 31% and 3% of those reared on corn, respectively. Survival rates of early-instars fed V. villosa and V. sativa were significantly lower than those fed corn. Population dynamics projections over 90 d showed the number of generations of S. frugiperda fed on V. villosa and V. sativa was reduced compared to those reared on corn. Flight performance of S. frugiperda reared on V. villosa decreased significantly compared to corn. Our results show that the three green manure species are unsuitable host plants for S. frugiperda. Therefore, reduction of corn production in southern China through rotation with these green manure crops may be a feasible method of ecological management of this major corn pest in China.


Assuntos
Esterco , Mariposas , Animais , Fertilidade , Larva , Controle de Pragas , Spodoptera , Zea mays
18.
Cell Rep ; 41(12): 111843, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543122

RESUMO

The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.


Assuntos
Mariposas , Animais , Spodoptera/genética , Mariposas/genética , Transcriptoma , Receptores de Superfície Celular/genética
19.
Arch Insect Biochem Physiol ; 77(3): 134-44, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21541990

RESUMO

At 22°C and under a long-day photoperiod of L:D 16:8, all the last fifth instar Loxostege sticticalis larvae undergo prepupal stage and pupate without diapause. Under a short-day photoperiod of L:D 12:12, in contrast, they all enter diapause with approximately 36 days diapause maintenance and then terminate diapause spontaneously, although only 44% of the larvae terminated diapause successfully. Changes in hemolymph juvenile hormone (JH I) titers of diapause-destined larvae across diapause induction, maintenance and termination were examined using HPLC, and were compared with those of non-diapause-destined larvae from the fifth instar through pupation. JH I titer of the earliest fifth instar diapause-destined larvae remained at a high level with a peak of 220.4 ng/ml, though it decreased continuously to a minimum of 69.0 ng/ml on day 5 in the fifth instar when the larvae stopped feeding to enter diapause. During the diapause maintenance, JH I titer of the mature larvae increased significantly and maintained a high level until day 31 in prepupae. JH I titer declined and fluctuated at low level from 5 days before pupation. In contrast, JH I titer of both the fifth instar non-diapause-destined larvae and prepupae remained and fluctuated at low level consistently, as well as decreased before pupation. These results indicate that diapause induction and maintenance in this species might be a consequence of high JH, whereas diapause termination can be attributed to low JH titer, which was in agreement with the hormonal regulation observed in many other larval-diapausing insects.


Assuntos
Hormônios Juvenis/metabolismo , Mariposas/crescimento & desenvolvimento , Fotoperíodo , Animais , Larva/crescimento & desenvolvimento
20.
Environ Entomol ; 50(3): 523-531, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33693559

RESUMO

A facultative commitment to adult migration in the larval stage can be modified again after adult emergence in some Lepidoptera when influenced by an appropriate environmental cue during a sensitive stage. This phenomenon is termed secondary regulation of migration. The sensitive stage in adult beet webworm, Loxostege sticticalis L. (Lepidoptera: Pyralidae), was determined experimentally by starvation of presumed migrant females reared from gregarious-phase larvae (induced by crowding at 10 larvae per 650-ml jar). When presumed migrant adults were starved for 24 h on either of the first 2 d after emergence, the preoviposition period was shortened. In contrast, preoviposition periods were not significantly shortened for migrants starved on day 3 or when starvation lasted for more than 1 d after emergence. Because the preoviposition period corresponds to the migratory period in beet webworm, the results suggest that the first 2 d of adult life in the beet webworm is the sensitive stage during which presumed migrants can be switched to residents by an appropriate environmental cue. During the sensitive stage or not, starvation did not influence lifetime fecundity, oviposition period, longevity, or hatching rate of eggs laid by the starvation-stressed moths. Starvation on the first day also increased tethered flight performance and accelerated both flight muscle and ovarian development. The results suggest that a pulse of starvation in the sensitive period may inhibit the expected migration by accelerating and compressing the cycle of migratory flight muscle development and degeneration, while accelerating ovarian development, which is normally suppressed until after migration.


Assuntos
Beta vulgaris , Mariposas , Animais , Feminino , Larva , Oviposição , Óvulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA