Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Probes ; 75: 101957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513992

RESUMO

With rising society stress, depression-induced osteoporosis is increasing. However, the mechanism involved is unclear. In this study, we explored the effect of plasma exosomal miRNAs on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation in a chronic unpredictable mild stress (CUMS)-induced depression rat model. After 12 weeks of CUMS-induced depression, the pathological changes in the bone tissue and markers of osteogenic differentiation were tested by micro-computed tomography, hematoxylin-eosin staining, and quantitative real-time reverse transcription PCR (qRT-PCR). Plasma exosomes from rats were isolated and co-incubated with BMSCs for 14 d to detect the effect on osteogenic markers. Next-generation sequencing identified the miRNAs in the plasma exosomes, and the differential miRNAs were analyzed and verified by qRT-PCR. BMSCs were infected with lentivirus to upregulate miRNA-30a-5p and incubated in a medium that induced osteogenic differentiation for 14 d. The effect of miR-30a-5p on osteogenic differentiation was determined by qPCR and alizarin red staining. CUMS-induced depression rat model was established successfully, and exhibited reduced bone mass and damaged bone microstructure compared to that of the controls. The observed pathological changes suggested the occurrence of osteoporosis in the CUMS group, and the mRNA expression of osteogenic markers was also significantly reduced. Incubation of BMSCs with plasma exosomes from the CUMS group for 14 d resulted in a significant decrease in the expression of osteogenic markers. Twenty-five differentially expressed miRNAs in plasma exosomes were identified and upregulation of miR-30a-5p was observed to significantly inhibit the expression of osteogenic markers in BMSCs. Our findings contributed to a comprehensive understanding of the mechanism of osteoporosis caused by depression, and demonstrated the potential of miR-30a-5p as a novel biomarker or therapeutic target for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , Depressão , Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Ratos Sprague-Dawley , Animais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/sangue , Osteogênese/genética , Exossomos/metabolismo , Exossomos/genética , Diferenciação Celular/genética , Depressão/genética , Depressão/sangue , Ratos , Masculino , Estresse Psicológico/complicações , Estresse Psicológico/sangue , Osteoporose/genética , Osteoporose/sangue
2.
PeerJ ; 10: e14111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213502

RESUMO

Background: Clopidogrel is widely used to prevent and treat cardiovascular atherosclerosis and thrombosis. However, disturbance in the expression and activity of liver cytochrome metabolic enzymes significantly changes clopidogrel efficacy. Therefore, the effect of chronic unpredictable mild stress (CUMS)-induced depression on the expression of liver cytochrome metabolic enzymes and clopidogrel pharmacokinetics in rats were explored. Methods: Nine different CUMSs were selected to establish a rat model of depression. Open field experiment and sucrose preference test were applied to explore the depressive behaviors. The concentration of serotonin in the cortex of depressed rats was determined using enzyme linked immunosorbent assay (ELISA). All rats were given 10 mg/kg clopidogrel orally after 12 weeks, and blood samples were collected at different time points. The clopidogrel concentration and CYP2C19/ CYP2C9 activity in rat liver microsomes were assayed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The rat liver drug enzymes expression was determined by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Results: Open field experiment and sucrose preference test indicated the successful construction of the CUMS-induced depression model. The concentration of serotonin in the cortex of depressed rats decreased by 42.56% (∗∗ p < 0.01). The area under the curve of clopidogrel pharmacokinetics decreased by 33.13% (∗ p < 0.05) in the depression rats, while distribution volume and clearance increased significantly (∗∗ p < 0.01). The half-time and distribution volume did not significantly differ. The CYP2C19 and CYP2C9 activity of liver microsomes in the CUMS-induced depression group were significantly higher than that in the control group (∗∗ p < 0.01). CYP2C11 and CYP1A2 mRNA expression up-regulated approximately 1.3 - fold in the depressed rat livers compared with that in the control, whereas that of CYP2C13 was down-regulated by 27.43% (∗∗ p < 0.01). CYP3A1 and CYP2C12 expression were slightly up-regulated, and that of CES1 did not change. Conclusions: These results indicated that CUMS-induced depression altered clopidogrel pharmacokinetics, and the change in CYP450 activity and expression in depressed rat livers might contribute to the disturbance of clopidogrel pharmacokinetics.


Assuntos
Clopidogrel , Depressão , Estresse Psicológico , Animais , Ratos , Clopidogrel/farmacocinética , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/genética , Depressão/tratamento farmacológico , Ratos Sprague-Dawley , Serotonina , Sacarose , Espectrometria de Massas em Tandem
3.
Sci Rep ; 11(1): 12897, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145340

RESUMO

Coronary heart disease (CHD) is the result of a complex metabolic disorder caused by various environmental and genetic factors, and often has anxiety as a comorbidity. Rupture of atherosclerotic plaque in CHD patients can lead to acute coronary syndrome (ACS). Anxiety is a known independent risk factor for the adverse cardiovascular events and mortality in ACS, but it remains unclear how stress-induced anxiety behavior impacts their blood plasma metabolome and contributes to worsening of CHD. The present study aimed to determine the effect of anxiety on the plasma metabolome in ACS patients. After receiving ethical approval 26 ACS patients comorbid anxiety were recruited and matched 26 ACS patients. Blood plasma samples were collected from the patients and stored at - 80 °C until metabolome profiling. Metabolome analysis was performed by liquid chromatography mass spectrometry (LC-MS), and the data were subjected to multivariate analysis. Disturbance of 39 plasma metabolites was noted in the ACS with comorbid anxiety group compared to the ACS group. These disturbed metabolites were mainly involved in tryptophan metabolism, pyrimidine metabolism, glycerophospholipid metabolism, pentose phosphate pathway, and pentose and glucuronate interconversions. The most significantly affected pathway was tryptophan metabolism including the down-regulation of tryptophan and serotonin. Glycerophospholipids metabolism, pentose and glucuronate interconversions, and pentose phosphate pathway were also greatly affected. These results suggest that anxiety can disturb three translation of material in ACS patients. Besides the above metabolism pathways pyrimidine metabolism was significantly disturbed. Based on the present findings the plasma metabolites monitoring can be recommended and may be conducive to early biomarkers detection for personalized treatment anxiety in CHD patients in future.


Assuntos
Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/psicologia , Ansiedade/sangue , Biomarcadores/sangue , Metaboloma , Metabolômica , Síndrome Coronariana Aguda/epidemiologia , Idoso , Ansiedade/epidemiologia , Cromatografia Líquida de Alta Pressão , Comorbidade , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Vigilância em Saúde Pública , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA