Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Plant Physiol ; 194(4): 2322-2337, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37995308

RESUMO

Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum lycopersicum/genética , Genes Homeobox , Frutas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 195(4): 2727-2742, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38669310

RESUMO

The histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. In this study, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as an H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation. Overexpression of SlJMJ3 leads to accelerated fruit ripening, whereas loss of function of SlJMJ3 delays this process. Furthermore, we determined that SlJMJ3 exerts its regulatory function by modulating the expression of multiple ripening-related genes involved in ethylene biosynthesis and response, carotenoid metabolism, cell wall modification, transcriptional control, and DNA methylation modification. SlJMJ3 binds directly to the promoters of ripening-related genes harboring the CTCTGYTY motif and activates their expression. Additionally, SlJMJ3 reduces the levels of H3K27me3 at its target genes, thereby upregulating their expression. In summary, our findings highlight the role of SlJMJ3 in the regulation of fruit ripening in tomato. By removing the methyl group from trimethylated histone H3 lysine 27 at ripening-related genes, SlJMJ3 acts as an epigenetic regulator that orchestrates the complex molecular processes underlying fruit ripening.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Histona Desmetilases , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Histonas/genética , Plantas Geneticamente Modificadas , Metilação de DNA/genética , Etilenos/metabolismo , Regiões Promotoras Genéticas/genética
3.
Plant Physiol ; 195(2): 1382-1400, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38345866

RESUMO

Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Cotilédone , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cotilédone/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutação/genética , Regiões Promotoras Genéticas/genética , Estiolamento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética
4.
Crit Rev Biotechnol ; 44(2): 236-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642423

RESUMO

Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.


Assuntos
Frutas , Verduras , Animais , Humanos , Plásticos , Biopolímeros
5.
J Nat Prod ; 87(10): 2366-2375, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39388644

RESUMO

Vancomycin-resistant Enterococcus (VRE) is an important nosocomial opportunistic pathogen that is associated with multidrug resistance. Here, we demonstrate that morellic acid inhibits VRE by restoring its sensitivity to vancomycin and ampicillin with low drug resistance and efficient biofilm clearance effects. Morellic acid binds to inner membrane phospholipids, such as phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) of VRE, such that the fluidity and proton-motive force (PMF) interfere with the damaged inner membrane, causing intracellular reactive oxygen species (ROS) accumulation and bacterial death. Transcriptional analyses supported this effect on inner membrane-related pathways such as fatty acid biosynthesis and glycerophospholipid metabolism. Moreover, morellic acid significantly eliminated residual bacteria in the spleen, liver, kidneys, and abdominal effusion in mice. Our findings indicate the potential applications of morellic acid as an antibacterial agent or adjuvant for treating VRE infections.


Assuntos
Antibacterianos , Enterococos Resistentes à Vancomicina , Vancomicina , Xantonas , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Vancomicina/farmacologia , Xantonas/farmacologia , Xantonas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Environ Res ; 255: 119210, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795947

RESUMO

Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.


Assuntos
Caspase 1 , Chumbo , Neurônios , Piroptose , Piroptose/efeitos dos fármacos , Animais , Caspase 1/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Chumbo/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Dipeptídeos , para-Aminobenzoatos
7.
Ecotoxicol Environ Saf ; 270: 115853, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128313

RESUMO

BACKGROUND: Manganese (Mn) and iron (Fe) are essential trace elements for humans, yet excessive exposure to Mn or Fe can accumulate in the central nervous system (CNS) and cause neurotoxicity. The purpose of this study was to investigate the effects of Mn and Fe exposure, alone or in combination, on inducing oxidative stress-induced neurological damage in rat cortical and SH-SY5Y cells, and to determine whether combined exposure to these metals increases their individual toxicity. METHODS: SH-SY5Y cells and male Sprague-Dawley rats were used to observe the effects of oxidative stress-induced neurological damage induced by exposure to manganese and iron alone or in combination. To detect the expression of anti-oxidative stress-related proteins, Nrf2, HO-1, and NQO1, and the apoptosis-related proteins, Bcl2 and Bax, and the neurological damage-related protein, α-syn. To detect reactive oxygen species generation and apoptosis. To detect the expression of the rat cortical protein Nrf2. To detect the production of proinflammatory cytokines. RESULTS: We demonstrate that juvenile developmental exposure to Mn and Fe and their combination impairs cognitive performance in rats by inducing oxidative stress causing neurodegeneration in the cortex. Mn, Fe, and their combined exposure increased the expression of ROS, Bcl2, Bax, and α-syn, activated the inflammatory factors IL-6 and IL-12, inhibited the activities of SOD and GSH, and induced oxidative stress-induced neurodegeneration both in rats and SH-SY5Y cells. Combined Mn-Fe exposure attenuated the oxidative stress induced by Mn and Fe exposure alone by increasing the expression of antioxidant factors Nrf2, HO-1, and NQO1. CONCLUSION: In both in vivo and in vitro studies, manganese and iron alone or in combination induced oxidative stress, leading to neuronal damage. In contrast, combined exposure to manganese and iron mitigated the oxidative stress induced by exposure to manganese and iron alone by increasing the expression of antioxidant factors. Therefore, studies to elucidate the main causes of toxicity and establish the molecular mechanisms of toxicity should help to develop more effective therapeutic modalities in the future.


Assuntos
Manganês , Neuroblastoma , Humanos , Masculino , Ratos , Animais , Manganês/toxicidade , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferro/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
8.
Ecotoxicol Environ Saf ; 270: 115873, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150749

RESUMO

Heavy metal(loid)s contamination prevails in the water-soil-plant system around non-ferrous metal mining areas. The present study aimed to evaluate the heavy metal(loid)s contamination in Nandan Pb-Zn mining area (Guangxi, China). A total of 36 river water samples, 75 paired paddy soil and rice samples, and 128 paired upland soil and plant samples were collected from this area. The concentrations of arsenic (As), lead (Pb), and cadmium (Cd) in these samples were measured. Results showed that the average water quality indexes (WQIs) at the 12 sampling sites along the main river ranged from 41 to 5008, indicating the water qualities decreasing from "Excellent" to "Undrinkable". The WQIs nearby tailings or industrial park were significantly higher than those at the other sites. 34.0% and 64.5% of soil samples exceeded the risk screening values for As and Cd. The Pb and Cd concentrations in all rice samples exceeded the Chinese food safety limits by 18.7% and 82.7%, respectively. Leafy vegetables had a higher concentration of As, Pb, and Cd than other vegetables, exceeding the maximum permissible limits by 14.1%, 61.2%, and 40.0%, respectively. The biological accumulation coefficient (BAC) of Cd was the highest in rice and lettuce leaves. The hazard quotients (HQs) of As and Cd, indicating non-carcinogenic risks, were 4.15 and 1.76 in adult males, and 3.40 and 1.45 in adult females, all higher than the permitted level (1.0). The carcinogenic probabilities of As and Cd from rice and leafy vegetables consumption were all higher than 1 × 10-4. We conclude that metal(loid)s contamination of the water-soil-plant system has posed great non-carcinogenic and carcinogenic risks to the local population.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Adulto , Cádmio/análise , Arsênio/análise , Chumbo , Solo , Poluentes do Solo/análise , China , Metais Pesados/análise , Verduras , Mineração , Medição de Risco , Monitoramento Ambiental
9.
Pestic Biochem Physiol ; 205: 106151, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39477604

RESUMO

Plant-derived exosome-like nanoparticles (PENs) are crucial for intercellular communication. However, PEN-based transport of pathogenic fungal genes remains unclear. This study isolated and purified PENs from lane late navel orange citrus juice by following the sucrose gradient ultracentrifugation technique. Citrus PENs were round and oval-shaped with an average size of 154.5 ± 1.9 nm. Electroporation-based exogenous dsRNA to PENs loading efficiency remained at 6.0 %. Laser confocal microscopy was employed to investigate citrus PEN uptake by fungal spores. dsCrcB loaded PENs inhibited the CrcB gene expression in spores to alleviate Penicillium italicum resistance against prochloraz fungicide, which promoted resistant strains' mortality by 10-fold. Moreover, dsFUM21-loaded PENs suppressed the FUM21 gene expression in spores, which significantly reduced FB1 production in Fusarium proliferatum. These findings suggest that citrus PENs could potentially serve as nano-carriers to counter fungicide resistance and mycotoxin production in pathogenic plant fungi.


Assuntos
Citrus , Exossomos , Fusarium , Micotoxinas , Doenças das Plantas , RNA de Cadeia Dupla , Citrus/microbiologia , Exossomos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA de Cadeia Dupla/genética , Fusarium/efeitos dos fármacos , Fusarium/genética , Fungicidas Industriais/farmacologia , Penicillium/efeitos dos fármacos , Penicillium/genética , Penicillium/metabolismo , Nanopartículas/química , Resistência à Doença
10.
Pestic Biochem Physiol ; 198: 105718, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225074

RESUMO

Citrus blue and green molds caused by Penicillium digitatum, P. italicum, and P. polonicum, are the major postharvest diseases of citrus fruit. In the present study, Actinomycin X2 (Act-X2), a naturally occurring antibiotic produced by Streptomyces species, was found to show excellent antifungal effect against these three pathogens with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL for them all, which was better than the positive control thiophanate-methyl. Act-X2 significantly reduced the percentage of spore germination, and highly inhibited the mycelial growth of P. italicum, P. digitatum, and P. polonicum with EC50 values being 34.34, 13.76, and 37.48 µg/mL, respectively. In addition, Act-X2 greatly decreased the intracellular protein content while increasing the reactive oxygen species (ROS) level and superoxide anion (O2-) content in the mycelia of pathogens. In vivo test indicated that Act-X2 strongly inhibited the infection of navel oranges by these three Penicillium species, with an inhibition percentage of >50% for them all at the concentration of 10 MIC. Transcriptome analysis suggested that Act-X2 might highly influence the ribosomal functions of P. polonicum, which was supported as well by the molecular docking analysis of Act-X2 with some key functional proteins and RNAs of the ribosome. Furthermore, Act-X2 significantly reduced the decay percentage and improved the firmness, color, and sugar-acid ratio of navel oranges spray-inoculated with P. polonicum during the postharvest storage at 4 °C for 60 d.


Assuntos
Antifúngicos , Citrus , Dactinomicina/análogos & derivados , Antifúngicos/farmacologia , Citrus/microbiologia , Simulação de Acoplamento Molecular , Fungos , Frutas/microbiologia
11.
Toxicol Ind Health ; 40(1-2): 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37984499

RESUMO

Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary ß2-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa2-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary ß2-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa2-EDTA treatment.


Assuntos
Intoxicação por Chumbo , Chumbo , Criança , Lactente , Humanos , Chumbo/toxicidade , China/epidemiologia , Ácido Edético , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/etiologia , Hematócrito , Hemoglobinas
12.
J Sci Food Agric ; 104(6): 3275-3293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115189

RESUMO

BACKGROUND: Fig (Ficus carica L.) fruit is consumed worldwide as a functional food. It contains phytochemicals that have been related to health benefits. However, the characteristic chemicals remain unclear. In this work, phytochemicals were prepared from figus by ultrasound-assisted extraction under optimized conditions. The chemical composition of fig fruit and leaves was characterized by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: One hundred and fifty-seven compounds were identified, including 58 flavonoids, 29 coumarins, 19 acids, 15 terpenoids, 11 alkaloids, and 25 other compounds. The mass spectrum (MS) fragmentation pathways of representative chemicals were elucidated. Flavonoid glycosides and prenylated flavonoids were mainly present in fig fruit, whereas coumarins were abundant in leaves. Both fig fruit and leaf extracts showed good cellular antioxidant activity. CONCLUSION: The full phytochemical profile of fig was revealed by UPLC-MS/MS. Prenylated flavonoids and prenylated coumarins were the characteristic phytochemicals. These data provided useful information for the extensive utilization of fig fruit in functional food. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Ficus , Antioxidantes/análise , Ficus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flavonoides/análise , Cumarínicos , Extratos Vegetais/química , Compostos Fitoquímicos/análise
13.
Compr Rev Food Sci Food Saf ; 23(5): e13416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136997

RESUMO

Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.


Assuntos
Manipulação de Alimentos , Ácido Fítico , Ácido Fítico/análise , Manipulação de Alimentos/métodos , 6-Fitase
14.
Plant J ; 111(3): 698-712, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35634876

RESUMO

Cellular energy status is a key factor deciding the switch-on of the senescence of horticultural crops. Despite the established significance of the conserved energy master regulator sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) in plant development, its working mechanism and related signaling pathway in the regulation of fruit senescence remain enigmatic. Here, we demonstrate that energy deficit accelerates fruit senescence, whereas exogenous ATP treatment delays it. The transient suppression of LcSnRK1α in litchi (Litchi chinensis Sonn.) fruit inhibited the expression of energy metabolism-related genes, while its ectopic expression in tomato (Solanum lycopersicum) promoted ripening and a high energy level. Biochemical analyses revealed that LcSnRK1α interacted with and phosphorylated the transcription factors LcbZIP1 and LcbZIP3, which directly bound to the promoters to activate the expression of DARK-INDUCIBLE 10 (LcDIN10), ASPARAGINE SYNTHASE 1 (LcASN1), and ANTHOCYANIN SYNTHASE (LcANS), thereby fine-tuning the metabolic reprogramming to ensure energy and redox homeostasis. Altogether, these observations reveal a post-translational modification mechanism by which LcSnRK1α-mediated phosphorylation of LcbZIP1 and LcbZIP3 regulates the expression of metabolic reprogramming-related genes, consequently modulating litchi fruit senescence.


Assuntos
Litchi , Solanum lycopersicum , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Litchi/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
15.
Neurochem Res ; 48(1): 238-249, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063295

RESUMO

Lead (Pb) is considered to be a major environmental pollutant and occupational health hazard worldwide which may lead to neuroinflammation. However, an effective treatment for Pb-induced neuroinflammation remains elusive. The aim of this study was to investigate the mechanisms of Pb-induced neuroinflammation, and the therapeutic effect of sodium para-aminosalicylic acid (PAS-Na, a non-steroidal anti-inflammatory drug) in rat cerebral cortex. The results indicated that Pb exposure induced pathological damage in cerebral cortex, accompanied by increased levels of inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Moreover, Pb decreased the expression of silencing information regulator 2 related enzyme 1 (SIRT1) and brain-derived neurotrophic factor (BDNF), and increased the levels of high mobile group box 1 (HMGB1) expression and p65 nuclear factor-κB (NF-κB) phosphorylation. PAS-Na treatment ameliorated Pb-induced histopathological changes in rat cerebral cortex. Moreover, PAS-Na reduced the Pb-induced increase of TNF-α and IL-1ß levels concomitant with a significant increase in SIRT1 and BDNF levels, and a decrease in HMGB1 and the phosphorylation of p65 NF-κB expression. Thus, PAS-Na may exert anti-inflammatory effects by mediating the SIRT1/HMGB1/NF-κB pathway and BDNF expression. In conclusion, in this novel study PAS-Na was shown to possess an anti-inflammatory effect on cortical neuroinflammation, establishing its efficacy as a potential treatment for Pb exposures.


Assuntos
Ácido Aminossalicílico , Proteína HMGB1 , Ratos , Animais , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Sódio , Sirtuína 1/metabolismo , Chumbo/toxicidade , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Anti-Inflamatórios
16.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078096

RESUMO

This work summarizes the application of gas fumigation technology in postharvest fruit quality management and related biochemical mechanisms in recent years. Gas fumigants mainly include SO2, ClO2, ozone, NO, CO, 1-MCP, essential oils, H2S and ethanol. This work indicated that gas fumigation preservatives can effectively improve postharvest fruit quality, which is mainly manifested in delaying senescence, inhibiting browning, controlling disease and alleviating chilling injury. Gas preservatives are mainly involved in postharvest fruit quality control in the roles of antifungal agent, anti-browning agent, redox agent, ethylene inhibitors, elicitor and pesticide remover. Different gas preservatives have different roles, but most of them have multiple roles at the same time in postharvest fruit quality management. In addition, the role of some gas preservatives with direct antifungal activity in the control of postharvest fruit diseases can also activate defense systems to improve fruit resistance. It should be noted that some gas fumigation treatments with slow-release effects have been developed recently, which may allow gas fumigation gases to perform better. Moreover, some gas fumigants can cause irrational side effects on the fruit and some combined treatments need to be found to counteract such side effects.

17.
Crit Rev Food Sci Nutr ; 63(26): 8083-8106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35373665

RESUMO

Prenylated stilbenoids are a unique class of natural phenolic compounds consisting of C6-C2-C6 skeleton with prenyl substitution. They are potential nutraceuticals and dietary supplements presented in some edible plants. Prenylated stilbenoids demonstrate promising health benefits, including antioxidant, anti-cancer, anti-inflammatory, anti-microbial activities. This review reports the structure, bioactivity and potential application of prenylated stilbeniods in food industry. Edible sources of these compounds are compiled and summarized. Structure-activity relationship of prenylated stilbenoids are also highlighted. The biosynthesis strategies of prenylated stilbenoids are reviewed. The findings of these compounds as food preservative, nutraceuticals and food additive are discussed. This paper combines the up-to-date information and gives a full image of prenylated stilbenoids.


Assuntos
Estilbenos , Prenilação , Anti-Inflamatórios/farmacologia , Relação Estrutura-Atividade , Fenóis
18.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117083

RESUMO

Flavonoids are significant natural nutraceuticals and a key component of dietary supplements. Given that flavonoid glycosides are more plentiful in nature and less beneficial to human health than their aglycone counterparts, they serve as potential precursors for flavonoid production. Glycosidases have shown substantial potential within the food industry, particularly in enhancing the organoleptic properties of juice, wine, and tea. When applied to food resources, glycosidases can amplify their biological activities, thereby improving the performance of functional foods. This review provides up-to-date information on flavonoid glycosidases, including their catalytic mechanisms, biochemical properties, and natural sources, as well as their applications within the food industry. The use of flavonoid glycosidases in improving food quality is also reviewed.

19.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599623

RESUMO

Aurones are a subclass of active flavonoids characterized with a scaffold of 2-benzylidene-3(2H)-benzofuranone. This type of chemicals are widely distributed in fruit, vegetable and flower, and contribute to human health. In this review, we summarize the natural aurones isolated from dietary plants. Their positive effects on immunomodulation, antioxidation, cancer prevention as well as maintaining the health status of cardiovascular, nervous system and liver organs are highlighted. The biosynthesis strategies of plant-derived aurones are elaborated to provide solutions for their limited natural abundance. The potential application of natural aurones in food coloration are also discussed. This paper combines the up-to-date information and gives a full image of dietary aurones.

20.
Physiol Plant ; 175(2): e13883, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840510

RESUMO

Cuticular wax protects aerial plant tissues against uncontrolled water loss. To compare the differences among tissues, cultivars, and postharvest stages, we characterized the surface morphology, water permeability, and chemical composition of cuticular wax on the leaf, calyx, and petals of two carnation cultivars ('Master' and 'Lady green') at two postharvest stages. Obvious differences in these characteristics were found among tissues but not among cultivars or postharvest stages. The leaf surface was relatively smooth, whereas convex cells were observed on the petals. The mean minimum conductance of leaves was significantly higher than that of the calyx, followed by that of petals. It ranged between 8.8 × 10-4  m s-1 for 'Lady green' leaves at Stage II and 3.6 × 10-5  m s-1 for 'Master' petals at Stage I. Petal wax contained high concentrations of n-alkanes, whereas primary alcohols dominated in leaf wax. The weighted average chain length (ACL) was higher in petal wax than in leaf wax; it ranged from 19.6 in 'Lady green' leaves to 24.14 in 'Lady green' petals at Stage I. In conclusion, carnation petals are characterized by numerous convex cells on both the adaxial and abaxial surfaces, and their main cuticular wax components, alkanes, have a higher ACL than leaf cuticular wax, which contributes to their higher water barrier property. The results provide further evidence for the association between cuticular chemical composition and the physiological function of the cuticle in blocking water transpiration.


Assuntos
Dianthus , Água , Água/química , Ceras/química , Folhas de Planta/fisiologia , Permeabilidade , Alcanos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA