Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2190-2198, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29945367

RESUMO

The point of this study is to explore and investigate mechanisms of Buyang Huanwu decoction for treatment of cerebral infarction (CI) using a network pharmacology approach. First, TCMSP database, DrugBank database and PharmMapper server were used and combined with oral bioavailability and drug analysis to screen the components of Buyang Hanwu decoction and predict the potential targets. Then, Cytoscape 3.5.1 software was used to construct compounds-targets network and the protein-protein interaction (PPI) networks for targets of compounds and CI-related targets and merge the two PPI networks to acquire active targets. Finally, gene ontology (GO) and KEGG pathway analysis of active targets were carried out by DAVID online analysis tool and KOBAS 3.0 software. In total of 150 screened compounds and 232 potential targets were obtained. And in total of 208 active targets were finally determined by merging networks. Results indicated that Buyang Huanwu decoction might have a role in treating CI by regulating some biological processes including response to drug, aging, response to hypoxia, and blood coagulation, and some molecular function, such as protein binding, enzyme binding and serine-type endopeptidase activity. The mechanisms might be concerned with PI3K-Akt signaling pathway, TNF signaling pathway, HIF-1 signaling pathway and cAMP signaling pathway. Among them, the regulation of PI3K-Akt signaling pathway might be one of the most crucial mechanisms.


Assuntos
Infarto Cerebral/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais , Bases de Dados de Produtos Farmacêuticos , Humanos , Fosfatidilinositol 3-Quinases
2.
Soft Matter ; 13(35): 5824-5831, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28849843

RESUMO

We propose a class of diatomic 2-D soft granular crystals, which features pattern transformation under compression with lateral confinement. The proposed granular crystals are composed of two different types of cylinders: large soft cylinders and small hard cylinders. The pattern-transformable granular crystals are obtained by exploring perturbed packing patterns as potential configurations, and compression with lateral confinement as the driving force of the transition. As a demonstration of the proof-of-concept, we first show the results of desktop-scaled experiments and finite element simulations for a representative case. Then, we present the procedure to obtain these new pattern transformations in soft granular crystals based on the compact packing theory of diatomic circles. The scale-independent compact packing theory serves as an important part of the veiled underlying mechanism of the observed pattern transformations, so the proposed granular crystals can open new avenues in the microstructural design of functional materials towards practical applications.

3.
Int J Mol Sci ; 17(3): 315, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938526

RESUMO

For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1ß. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.


Assuntos
Antioxidantes/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Umbeliferonas/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 17(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879664

RESUMO

Chloranthalactone B (CTB), a lindenane-type sesquiterpenoid, was obtained from the Chinese medicinal herb Sarcandra glabra, which is frequently used as a remedy for inflammatory diseases. However, the anti-inflammatory mechanisms of CTB have not been fully elucidated. In this study, we investigated the molecular mechanisms underlying these effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CTB strongly inhibited the production of nitric oxide and pro-inflammatory mediators such as prostaglandin E2, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 in RAW264.7 cells stimulated with LPS. A reverse-transcription polymerase chain reaction assay and Western blot further confirmed that CTB inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, and IL-1ß at the transcriptional level, and decreased the luciferase activities of activator protein (AP)-1 reporter promoters. These data suggest that inhibition occurred at the transcriptional level. In addition, CTB blocked the activation of p38 mitogen-activated protein kinase (MAPK) but not c-Jun N-terminal kinase or extracellular signal-regulated kinase 1/2. Furthermore, CTB suppressed the phosphorylation of MKK3/6 by targeting the binding sites via formation of hydrogen bonds. Our findings clearly show that CTB inhibits the production of inflammatory mediators by inhibiting the AP-1 and p38 MAPK pathways. Therefore, CTB could potentially be used as an anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Lactonas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Fator de Transcrição AP-1/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Regulação da Expressão Gênica , Inflamação/prevenção & controle , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 3/antagonistas & inibidores , MAP Quinase Quinase 3/química , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/antagonistas & inibidores , MAP Quinase Quinase 6/química , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Biosci Biotechnol Biochem ; 79(10): 1635-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057458

RESUMO

Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry.


Assuntos
Angelica/química , Antineoplásicos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Extratos Vegetais/farmacologia , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Congelamento , Células HeLa , Humanos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Polietilenoglicóis/química , Polivinil/química , Pressão , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
6.
Biomed Pharmacother ; 172: 116260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382327

RESUMO

Ischemic stroke remains a major disease worldwide, and most stroke patients often suffer from serious sequelae. Endogenous neurogenesis matters in the repair and regeneration of impaired neural cells after stroke. We have previously reported in vivo that PNS could strengthen the proliferation and differentiation of neural stem cells (NSCs), modulate synaptic plasticity and protect against ischemic brain injuries in cerebral ischemia rats, which could be attributed to mTOR signaling activation. Next, to obtain further insights into the function mechanism of PNS, we evaluated the direct influence of PNS on the survival, differentiation and synaptic development of C17.2 NSCs in vitro. The oxygen glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemic brain injuries. We found that after OGD/R injuries, PNS improved the survival of C17.2 cells. Moreover, PNS enhanced the differentiation of C17.2 cells into neurons and astrocytes, and further promoted synaptic plasticity by significantly increasing the expressions of synapse-related proteins BDNF, SYP and PSD95. Meanwhile, PNS markedly activated the Akt/mTOR/p70S6K pathway. Notably, the mTOR inhibitor rapamycin pretreatment could reverse these desirable results. In conclusion, PNS possessed neural differentiation-inducing properties in mouse C17.2 NSCs after OGD/R injuries, and Akt/mTOR/p70S6K signaling pathway was proved to be involved in the differentiation and synaptic development of C17.2 cells induced by PNS treatment under the in vitro ischemic condition. Our findings offer new insights into the mechanisms that PNS regulate neural plasticity and repair triggered by NSCs, and highlight the potential of mTOR signaling as a therapeutic target for neural restoration after ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Células-Tronco Neurais , Panax notoginseng , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa , Neuritos , Proteínas Proto-Oncogênicas c-akt , Neurogênese , Serina-Treonina Quinases TOR , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
7.
Chem Sci ; 15(30): 11699-11718, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092108

RESUMO

Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.

8.
Phytomedicine ; 127: 155474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471369

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Assuntos
Ginsenosídeos , Doenças Inflamatórias Intestinais , Panax , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Qualidade de Vida , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação/tratamento farmacológico
9.
Chin Herb Med ; 16(1): 3-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375050

RESUMO

To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.

10.
Front Pharmacol ; 14: 1253572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849730

RESUMO

Background: Diabetic cardiomyopathy (DCM) is a severe complication of diabetes that can diminish the quality of life in patients and is a leading cause of death. Research has demonstrated the effectiveness of Traditional Chinese Medicine (TCM) in reducing blood sugar levels and protecting cardiovascular function in both animal models and clinical research studies. Nevertheless, the efficacy of TCM in animal models of DCM has not been analyzed systematically. Method: We searched the following electronic bibliographic databases: Web of Science, PubMed, Cochrane Library, and CNKI(China National Knowledge Infrastructure). Studies that reported the efficacy of TCM in animals with DCM were included. The literature search was conducted using the terms. The data will be restricted from the year 2013 to 24 April 2023, 24 studies were included in the meta-analysis. Result: A total of 24 Traditional Chinese Medicine interventions and 2157 animals met the inclusion criteria. The pooled data revealed that TCM interventions resulted in significant improvements in body weight (BW), heart weight (HW) to body weight ratio (HW/BW), triglyceride (TG) and cholesterol (TC) levels, ejection fraction (EF), fractional shortening (FS) and E/A ratio. Subgroup analysis and meta-regression revealed that the type of TCM, duration of intervention, method of modeling, and animal species were potential sources of heterogeneity. Conclusion: TCM interventions were associated with significant improvements in body weight, heart weight to body weight ratio, triglyceride and cholesterol levels, left ventricular internal dimension in systole, ejection fraction, fractional shortening and E/A ratio. The heterogeneity in the results was found to be potentially due to the type of TCM, duration of intervention, method of modeling, and animal species, as shown in subgroup analysis and meta-regression. Systematic Review Registration: identifier CRD42023402908.

11.
Phytomedicine ; 118: 154934, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393828

RESUMO

BACKGROUND: Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE: We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN: We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS: YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION: We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Multiômica , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Biologia Molecular , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
12.
Food Res Int ; 155: 111074, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400452

RESUMO

Lotus root polysaccharide (LRP) is an active water-soluble polysaccharide with average molecular weight of 1.24 × 104. It was composed of (1 â†’ 4)-α-D-glucan backbone with α-D-glycopyranosyl moieties connected to C-6 positions of the glucose residues as side chains approximately every six residues. However, little information is available for its digestion and fermentation characteristics in vitro. The results showed that the levels of reducing sugars were increased slightly, and the molecular weight was also reduced slightly, in simulated gastric and small intestinal juices. During in vitro fermentation, the total sugar, reducing sugar and glucose contents decreased gradually with increasing fermentation time. The molecular of LRP was degraded and to metabolize into a variety the short-chain fatty acids (SCFAs) such as acetic, propionic, and butyric acids. Furthermore, LRP fermentation decreased the pH of the fermentation broth and increased its absorbance. Meanwhile, LRP modulated the gut microbiota by altering the Firmicutes/Bacteroidetes ratio and increasing the relative abundance of Bifidobacterium. The findings from this study showed that LRP could be developed as potential prebiotic to regulate the composition of gut microbiota, thereby promote the production of SCFAs.


Assuntos
Microbioma Gastrointestinal , Nelumbo , Carboidratos da Dieta , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Glucose , Humanos , Nelumbo/metabolismo , Polissacarídeos/química , Açúcares
13.
Front Pharmacol ; 13: 861105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662699

RESUMO

Sepsis is an acute systemic infectious disease with high mortality, which urgently needs more effective treatment. Scutellariae radix (SR), a commonly used traditional Chinese medicine (TCM) for clearing heat and detoxification, contains rich natural products possessing anti-inflammatory activity. In previous studies, it was found that the anti-inflammatory activities of SR extracts from different ecological conditions varied wildly. Based on this, in the present study, a screening strategy of antisepsis active components from SR based on correlation analysis between plant metabolomics and pharmacodynamics was established, and the mechanism was explored. First of all, a mass spectrum database of SR (above 240 components) was established to lay the foundation for the identification of plant metabolomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). Through the correlation analysis between plant metabolomics and anti-inflammatory activity of SR from different ecology regions, 10 potential components with high correlation coefficients were preliminarily screened out. After the evaluation of anti-inflammatory activity and toxicity at the cellular level, the pharmacodynamic evaluation in vivo found that oroxylin A had the potentiality of antisepsis both in LPS- and CLP-induced endotoxemia mice. Network pharmacology and Western blot (WB) results indicated that oroxylin A significantly inhibited the toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway, which was further confirmed by secreted embryonic alkaline phosphatase (SEAP) assay. Moreover, the molecular docking analysis indicated that oroxylin A might competitively inhibit LPS binding to myeloid differentiation 2 (MD-2) to block the activation of TLR4. The study provided a feasible research strategy for the screening and discovery of antisepsis candidate drugs from TCM.

14.
J Ethnopharmacol ; 282: 114659, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543683

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Senkyunolide H (SNH) is a bioactive phthalide isolated from Ligusticum chuanxiong Hort rhizome and was reported to have multiple pharmacological effects. AIM OF THE STUDY: The study was performed to verify the potency of SNH protecting PC12 cells from oxygen glucose deprivation/reperfusion (OGD/R)-induced injury and to elucidate the underlying mechanisms. MATERIALS AND METHODS: OGD/R model was established in PC12 cells and the cell viability was measured by MTT assay. The cell morphology was observed using scanning electron microscope (SEM). The potential targets of SNH and related targets of OGD/R were screened, and a merged protein-protein interaction (PPI) network of SNH and OGD/R was constructed based on the network pharmacology analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway analysis. Intracellular cAMP level and the protein expression levels were measured to elucidate the underlying mechanisms. RESULTS: SNH pretreatment protected PC12 cells against OGD/R-induced cell death. SNH also significantly protected the cell protrusion. A merged PPI network was constructed and the shared candidate targets significantly enriched in cAMP signaling pathway. The level of intracellular cAMP and the protein level of p-CREB, p-AKT, p-PDK1 and PKA protein were up-regulated after the treatment of SNH compared with OGD/R modeling. CONCLUSIONS: The present study indicated that SNH protected PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway.


Assuntos
Benzofuranos/farmacologia , AMP Cíclico/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Farmacologia em Rede , Oxigênio/administração & dosagem , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
Front Pharmacol ; 13: 980449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091745

RESUMO

Stroke is a major cause of death and disability throughout the world. A combination of Panax Ginseng and Ginkgo biloba extracts (CGGE) is an effective treatment for nervous system diseases, but the neuroprotective mechanism underlying CGGE remains unclear. Both network analysis and experimental research were employed to explore the potential mechanism of CGGE in treating ischemic stroke (IS). Network analysis identified a total number of 133 potential targets for 34 active ingredients and 239 IS-related targets. What's more, several processes that might involve the regulation of CGGE against IS were identified, including long-term potentiation, cAMP signaling pathway, neurotrophin signaling pathway, and Nod-like receptor signaling pathway. Our studies in animal models suggested that CGGE could reduce inflammatory response by inhibiting the activity of Nod-like receptor, pyrin containing 3 (NLRP3) inflammasome, and maintain the balance of glutamate (Glu)/gamma-aminobutyric acid (GABA) via activating calmodulin-dependent protein kinase type Ⅳ (CAMK4)/cyclic AMP-responsive element-binding protein (CREB) pathway. These findings indicated the neuroprotective effects of CGGE, possibly improving neuroinflammation and excitotoxicity by regulating the NLRP3 inflammasome and CAMK4/CREB pathway.

16.
J Agric Food Chem ; 69(45): 13546-13556, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735147

RESUMO

Phytochemicals from lingonberry have rich pharmacological value and may play an essential role in treating liver diseases. We investigated the regulatory role of lingonberry anthocyanins (LA) on HSC activation in vitro and liver fibrogenesis in vivo. The viability of HSCs treated with LA was significantly reduced in a dose-dependent manner at the concentration of 25-100 µg/mL, in which the monomers of LA also reduced the proliferation of HSCs via IC50 assay. The inducer transforming growth factor ß1 (TGFß1) and the effector α-smooth muscle actin (α-SMA) of HSC activation were all decreased both in protein and RNA levels treated by LA. Moreover, LA alleviated CCl4-induced liver fibrosis in rats, reducing collagen aggregation and production and decreasing the hydroxyproline (HYP) and malondialdehyde (MDA) levels in the liver tissue. Moreover, LA reduced the indexes of serum liver fibrosis and reversed the index of serum liver function in CCl4-induced rats. Furthermore, the antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), in the liver tissue and serum were significantly increased upon treatment with LA. Importantly, LA promoted hepatic parenchymal cell proliferation and inhibited the expression of TGFß/Smad/extracellular regulated protein kinase (ERK) signaling pathway-related genes. This study demonstrates the anti-liver fibrosis activity of LA and investigates its mechanism, which may provide a novel strategy for treating liver fibrosis using lingonberry.


Assuntos
Células Estreladas do Fígado , Vaccinium vitis-Idaea , Animais , Antocianinas , Tetracloreto de Carbono/toxicidade , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1
17.
J Ethnopharmacol ; 272: 113923, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33617968

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY: This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS: In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS: In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION: In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.


Assuntos
Abietanos/farmacologia , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Abietanos/uso terapêutico , Abietanos/toxicidade , Animais , Isquemia Encefálica/complicações , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , AVC Isquêmico/etiologia , AVC Isquêmico/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Quinases raf/metabolismo
18.
J Agric Food Chem ; 68(51): 15239-15248, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290066

RESUMO

Vina-ginsenoside R4 (VGN4) is the first example of protopanaxatriol saponin possessing sugar chains located at C-3 and C-20 of aglycone. However, to the best of our knowledge, no report has been published on the neuroprotective effect of VGN4. In the present work, we investigated the neuroprotective effect of VGN4 against 6-hydroxydopamine (6-OHDA)-induced toxicity and its potential mechanism. Pretreatment of PC12 cells with VGN4 attenuated 6-OHDA-induced cell damage and cell apoptosis, which was correlated with the decrease of reactive oxygen species and the increase of antioxidant enzyme activities including superoxide dismutase and catalase. In addition, VGN4 markedly decreased nuclear translation of the nuclear factor-κB and PI3K/Akt/GSK/3ß signaling pathway including p85, PDK1, Akt, and GSK-3ß. Further studies revealed that PI3K siRNA attenuated the neuroprotective effect of VGN4 on caspase-3 activity. These data indicate that VGN4 might have the potential to be developed as a new neuroprotective functional food.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ginsenosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Síndromes Neurotóxicas/metabolismo , Panax/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Oxidopamina/toxicidade , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Folhas de Planta/química , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Bioinorg Chem Appl ; 2020: 7846176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32952541

RESUMO

Angelica gigas Nakai (AGN) was first processed by ultrafine grinding technology and hot-melt extrusion (HME). The potential antioxidant and anti-inflammatory activities of AGN with a different process were compared, and the effect on the human Kv1.3 potassium channel was detected. The process of ultrafine powderization on AGN significantly increased the total phenolic and flavonoid contents, antioxidant activity, and DNA damage protective effect. On the contrary, AGN solid dispersion (AGN-SD) based on Soluplus® showed the highest inhibitory effect on NO production and the human Kv1.3 channel. In addition, AGN-SD inhibited the production of prostaglandin E2 and intracellular reactive oxygen species and the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin 1ß, and interleukin 6. Taken together, these results suggest that ultrafine powderization and solid dispersion formation via HME can significantly improve the biological activities of AGN. The results also suggested that ultrafine powderization and HME may be developed and applied in the pharmaceutical industry.

20.
Carbohydr Polym ; 230: 115576, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887962

RESUMO

Ginsenoside compound K (CK), a major metabolite of protopanaxadiol ginsenosides, exhibits significant anticancer activities against various cancer cells. However, CK has poor water solubility and low bioavailability, which have limited its application. In this study, A54 peptide was utilized to fabricate CK-loaded micelles (APD-CK) for liver targeting, using deoxycholic acid-O-carboxymethyl chitosan as the vehicle. The average particle size of APD-CK micelles was about 171.4 nm by dynamic light scattering in the hydrated state and their morphology were spherical with good dispersion. An in vitro release assay indicated pH-responsive and sustained release behavior through a mechanism of non-Fickian diffusion. Moreover, the in vitro cytotoxicity of the APD-CK micelles against HepG2 and Huh-7 cells was significantly stronger than that of CK up to 20 µg/mL. Enhanced cellular uptake of micelles in both cell types was established using confocal fluorescence scanning microscopy and flow cytometry. In addition, western blot analysis revealed that APD-CK micelles could promote the protein expression levels of caspase-3, caspase-9, and poly (ADP-ribose) polymerase. Therefore, APD-CK micelles are a potential vehicle for delivering hydrophobic drugs in liver cancer therapy, enhancing drug targeting and anticancer activity.


Assuntos
Quitosana/farmacologia , Ginsenosídeos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Peptídeos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Citoplasma/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ginsenosídeos/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Micelas , Peptídeos/química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA