Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 59(19): 14031-14041, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32955246

RESUMO

An efficient strategy for the syntheses of a series of titanium complexes has been developed. This protocol features the employment of Ti(NMe2)4 both as the metal center to trigger the deprotonation of the ligands and as an amine source to proceed the amidation reactions of carbonyl functionalities of the ligands. Treatment of Ti(NMe2)4 with a ligand HL1 (HL1 = 2,2'-(((2-hydroxybenzyl)azanediyl)bis(ethane-2,1-diyl))bis(isoindoline-1,3-dione) results in the formation of Ti(L1')(NMe2) (1) (H3L1' = N1-(2-((2-(1-(dimethylamino)-1-hydroxy-3-oxoisoindolin-2-yl)ethyl)(2-hydroxybenzyl)amino)ethyl)-N2,N2-dimethylphthalamide). One important feature regarding the synthesis of 1 is the occurrence of the in situ metal-ligand reaction between Ti(NMe2)4 and HL1, leading to the simultaneous formations of carbinolamide and amide scaffolds. Another prominent feature in terms of the preparation of 1 is the achievement of the selective ring-opening reaction of one of the two phthalimide units of the HL1 ligand, affording carbinolamide and amide functionalities within one ligand set. The developed methodology characterizes an ample substrate scope. The selective amidation reactions of the carbonyl groups have been realized for a series of analogous ligands HL2-HL7. Density functional theory calculations were employed to disclose the mechanisms for the formation of 1-7, and the details for the selective ring-opening reactions of the phthalimide unit were uncovered.

2.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779286

RESUMO

Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Zea mays/fisiologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Processamento de Proteína Pós-Traducional , Plântula/metabolismo , Plântula/fisiologia , Análise de Sequência de RNA , Estresse Fisiológico , Zea mays/metabolismo
3.
PLoS One ; 17(6): e0269303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35653358

RESUMO

The potential effects of Bt (Bacillus thuringiensis) maize on non-target organisms should be evaluated before such maize is commercially planted. Earthworms play an indispensable role in the soil ecosystem; act as important bio-indicators of soil quality and environmental pollution. Therefore, earthworms are often used as the object to evaluate the non-target effect of Bt maize. To accelerate the commercialization of transgenic maize in China, a 90-day Eisenia fetida feeding experiment was conducted to evaluate the potential effects of Bt maize line, BT799-which was developed by China Agricultural University and contains the Cry1Ac gene-and its non-Bt conventional isoline-Zheng 58-on E. fetida. Our results showed that the Bt maize line had no significant effects on the growth, reproduction, or enzymatic activities of these earthworms. In summary, Bt maize had no toxic effects on E. fetida.


Assuntos
Oligoquetos , Plantas Geneticamente Modificadas , Animais , Toxinas de Bacillus thuringiensis/toxicidade , Ecossistema , Plantas Geneticamente Modificadas/toxicidade , Solo/química , Zea mays/genética
4.
Front Plant Sci ; 13: 875020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498653

RESUMO

Bacillus thuringiensis (Bt) protein expressed by genetically modified (GM) crops is released into the soil ecosystem, where it accumulates for a long time; therefore, degradation of Bt protein has gained increased attention for environmental risk assessments. A first-order kinetic model (Y = ae-b*X) is usually used to evaluate the degradation of Bt proteins, including Bt-Cry1Ab and Bt-Cry1Ac; this has some limitations regarding the precise fitting and explanation of the influence of various factors on Bt protein degradation in the later stage. Therefore, to amend these limitations, we report a new degradation model Y = Y0 + ae-b*X. The effects of soil temperature, water content, soil types, and soil sterilization on the degradation of Bt-Cry1Ah protein in soil were estimated in a 96d long laboratory study using a GM maize leaf-soil mixture. The results showed that the Bt-Cry1Ah protein degraded rapidly in the early stage and then slowly in the middle and late stages. Temperature was identified as the key factor affecting the degradation of Cry1Ah protein-a relatively higher temperature favored the degradation. The degradation rate of Cry1Ah protein was the fastest when the water content was 33 and 20% in the early and later stages, respectively. The soil types had a significant effect on the degradation of Cry1Ah protein. Moreover, soil sterilization slowed down the rate of protein degradation in both the early and later stages. In conclusion, the model Y = Y0 + ae-b*X established in this study provided a more robust model for exploring and simulating the degradation of Bt protein in soil growing GM crops and overcame the shortcomings of the Y = ae-b*X model. The findings of this study enriched the understanding of Bt protein degradation in soil ecosystems. They would be helpful for evaluating the environmental safety of GM crops.

5.
Sci Rep ; 12(1): 13435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927281

RESUMO

Bt maize is being increasingly cultivated worldwide as the effects of climate change are increasing globally. Bt maize IE09S034 and its near-isogenic non-Bt maize Zong 31 were used to investigate whether climate change alters the effects of Bt maize on soil Collembola. Warming and drought conditions were simulated using open-top chambers (OTC), and their effects on soil Collembola were evaluated. We found that the maize type had no significant effect on Collembola; however, the abundance and diversity of Collembola were significantly higher in the OTC than outside at the seedling stage; they were significantly lower in the OTC at the heading and mature stages. The interactions of the maize type with the OTC had no effect on these parameters. Therefore, Bt maize had no significant effect on soil Collembola, and the effects of climate warming and drought on soil Collembola depended on the ambient climatic conditions. When the temperature was low, collembolan abundance and diversity were promoted by warming; however, when the temperature was high and the humidity was low, collembolan abundance and diversity were inhibited by warming and drought. The climate changes simulated by the OTC did not alter the effects of Bt maize on soil Collembola.


Assuntos
Artrópodes , Solo , Animais , Mudança Climática , Microbiologia do Solo , Zea mays/genética
6.
Plant Physiol Biochem ; 166: 621-633, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34192648

RESUMO

GA 2-oxidases (GA2oxs) are a class of enzymes that inhibit the biosynthesis of bioactive GAs in plants. Although GA2oxs have clear roles in the development and defence responses in Arabidopsis, rice, and wheat, their potential effects on maize remain unclear. This study identified thirteen ZmGA2ox genes in maize and further characterized them using phylogenetic, gene structure, genomic locus, expression pattern analyses and GA content determination. Phylogenetic relationship analysis clearly divided the ZmGA2ox family into three groups-seven in C19-GA2ox class I, three in C19-GA2ox class II, and three in C20-GA2ox class. Evolutionary analysis suggested that ZmGA2ox1;1 and ZmGA2ox1;2, ZmGA2ox3;1 and ZmGA2ox3;2, and ZmGA2ox7;1 and ZmGA2ox7;2 are three pairs of segmental duplicated genes. Prediction of cis-regulatory elements in promoters suggested that ZmGA2ox genes were mainly associated with growth, development, hormones, and biotic/abiotic stress. Therefore, their spatial and temporal expression patterns and responses to various stress treatments were analysed on the basis of published RNA-seq data. Moreover, the changes of ZmGA2ox expression in leaves and roots of maize seedlings was detected under salt, alkali, dehydration, and cold stresses by qRT-PCR. The ZmGA2oxs exhibited obvious expression tendencies or characteristics in various organs under different abiotic stresses. The variations in the expression of three ZmGA2ox genes in the C20-GA2ox class in maize seedling roots showed significant regularity and a clear negative correlation with bioactive GA contents under cold and drought conditions, indicating that these three genes might exert key effects on the regulation of GA synthesis and the response to drought and cold stress. Taken together, this study is useful for further dissection of the effect of ZmGA2oxs on abiotic stress responses and might provide potential targets for the genetic improvement of maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo
7.
Insects ; 12(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494149

RESUMO

To evaluate the effect of Bt maize expressing Cry1Ie protein on non-target soil Collembola, a two-year field study was conducted in Northeast China. Bt maize line IE09S034 and its near isoline Zong 31 were selected as experimental crops; we investigated the collembolan community using both taxonomic and trait-based approaches, and elucidated the relationship between environmental variables and the collembolan community using redundancy analysis (RDA).The ANOVA results showed that maize variety neither had significant effect on the parameters based on taxonomic approach (abundance, species richness, Shannon-Wiener index, Pielou's evenness index), nor on the parameters based on trait-based approach (ocelli number, body length, pigmentation level, and furcula development) in either year. The results of RDA also showed that maize variety did not affect collembolan community significantly. These results suggest that two years cultivation of cry1Ie maize does not affect collembolan community in Northeast China.

8.
PLoS One ; 15(5): e0232747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374765

RESUMO

The potential effects of Bt (Bacillus thuringiensis) maize on non-target organisms must be conducted before the Bt maize is commercially planted. Folsomia candida is one of the non-target organisms of Bt maize, also as an important indicator of soil quality and environmental pollution. In this study, a 90-day F. candida feeding test were conducted to evaluate the potential effects of two Bt maize lines IE09S034 and BT799 and their non-Bt conventional isolines Zong 31 and Zheng 58. The results show that Bt maize lines had no significant effects on the survival rate, reproduction, adult body length, larval body length, and the activities of acetyl cholinesterase, catalase and superoxide dismutase on the F. candida. Namely, Bt maize had no toxic effects on the F. candida.


Assuntos
Bacillus thuringiensis/genética , Candida/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Acetilcolinesterase/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Catalase/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva , Reprodução/genética , Microbiologia do Solo , Superóxido Dismutase/metabolismo , Zea mays/microbiologia
9.
Front Plant Sci ; 9: 1485, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369939

RESUMO

The high-affinity potassium transporter (HKT) genes are essential for plant salt stress tolerance. However, there were limited studies on HKTs in maize (Zea mays), and it is basically unknown whether natural sequence variations in these genes are associated with the phenotypic variability of salt tolerance. Here, the characterization of ZmHKT1;5 was reported. Under salt stress, ZmHKT1;5 expression increased strongly in salt-tolerant inbred lines, which accompanied a better-balanced Na+/K+ ratio and preferable plant growth. The association between sequence variations in ZmHKT1;5 and salt tolerance was evaluated in a diverse population comprising 54 maize varieties from different maize production regions of China. Two SNPs (A134G and A511G) in the coding region of ZmHKT1;5 were significantly associated with different salt tolerance levels in maize varieties. In addition, the favorable allele of ZmHKT1; 5 identified in salt tolerant maize varieties effectively endowed plant salt tolerance. Transgenic tobacco plants of overexpressing the favorable allele displayed enhanced tolerance to salt stress better than overexpressing the wild type ZmHKT1;5. Our research showed that ZmHKT1;5 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species (ROS) at a low accumulation level. Especially, the two SNPs in ZmHKT1;5 might be related with new amino acid residues to confer salt tolerance in maize. Key Message: Two SNPs of ZmHKT1;5 related with salt tolerance were identified by association analysis. Overexpressing ZmHKT1;5 in tobaccos showed that the SNPs might enhance its ability to regulating Na+/K+ homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA