Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Opt Lett ; 49(6): 1571-1574, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489453

RESUMO

Compensating for the intrinsic attosecond chirp (atto-chirp) of wideband high-order harmonics in the water window region is a significant challenge, in order to obtain isolated attosecond pulses (IAPs) with a width of tens of attoseconds (as). Here, we propose to realize the generation of IAP with duration as short as 20 as, central energy of 365 eV, and bandwidth exceeding 150 eV from chirp-free high harmonics generated by a four-color driving laser, without the necessity for atto-chirp compensation with natural materials. Unlike any other gating methods that an IAP arises from only one electron ionization event, we take advantage of the interference between harmonic radiation produced by multiple ionizing events. We further demonstrate that such chirp-free short IAP survives after taking account of macroscopic propagation effects. Given that the synthesized multicolor laser field can also effectively increase the harmonic flux, this work provides a practical way for experiments to generate the broad bandwidth chirp-free IAPs in the water window region.

2.
Opt Express ; 31(2): 1567-1582, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785189

RESUMO

We theoretically study the dependence of below-threshold harmonic generation (BTHG) of atoms on the carrier-envelope phase (CEP) driven by few-cycle mid-infrared laser pulses. The BTHG spectra can be accurately and efficiently calculated by solving the three-dimensional time-dependent Schrödinger equation using the time-dependent generalized pseudospectral method. We present the BTHG spectra as a function of the laser-field CEP. CEP-dependent enhancement or suppression occurred at low laser field intensities owing to the changes in the resonant effects associated with multiple quantum trajectories. However, the BTHG of atoms driven by high laser intensities is insensitive to the CEP. The synchrosqueezing time-frequency transform of the BTHG and extended semiclassical analysis are performed to elucidate the underlying physical mechanism.

3.
Opt Express ; 31(1): 442-451, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606978

RESUMO

We theoretically present the waveform controls of terahertz (THz) radiations generated from homogeneous and rippled plasma within inhomogeneous external electrostatic field. The Particle-in-cell (PIC) simulations is implemented to demonstrate generation and controllability of three types of THz pulses: single frequency THz pulse in homogeneous plasma, broadband THz pulse and dual frequency THz pulse in rippled plasma. The single frequency THz pulse can be tuned via shifting the knob of electron density of homogeneous plasma. Waveform of broadband THz pulse can be regulated into an envelope-like shape by varying amplitude of electron density of rippled plasma. The two center frequencies' interval of dual frequency THz pulse can be controlled by wave numbers of density distribution of rippled plasma. This work provides a potential means to generate the dual frequency THz pulses with two harmonic frequencies (ω+Ωω, Ω=2) or incommensurate frequencies (ω+Ωω, Ω=1.7,1.8, 2.2…).

4.
Opt Express ; 31(11): 17782-17791, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381503

RESUMO

Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

5.
Phys Rev Lett ; 130(6): 060802, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827576

RESUMO

Boson sampling is a computational problem, which is commonly believed to be a representative paradigm for attaining the milestone of quantum advantage. So far, massive efforts have been made to the experimental large-scale boson sampling for demonstrating this milestone, while further applications of the machines remain a largely unexplored area. Here, we investigate experimentally the efficiency and security of a cryptographic one-way function that relies on coarse-grained boson sampling, in the framework of a photonic boson-sampling machine fabricated by a femtosecond laser direct writing technique. Our findings demonstrate that the implementation of the function requires moderate sample sizes, which can be over 4 orders of magnitude smaller than the ones predicted by the Chernoff bound; whereas for numbers of photons n≥3 and bins d∼poly(m,n), the same output of the function cannot be generated by nonboson samplers. Our Letter is the first experimental study that deals with the potential applications of boson sampling in the field of cryptography and paves the way toward additional studies in this direction.

6.
Mol Psychiatry ; 27(10): 4077-4091, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804093

RESUMO

Fear extinction allows for adaptive control of learned fear responses but often fails, resulting in a renewal or spontaneous recovery of the extinguished fear, i.e., forgetting of the extinction memory readily occurs. Using an activity-dependent neuronal labeling strategy, we demonstrate that engram neurons for fear extinction memory are dynamically positioned in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus (vHPC), which constitute an engram construct in the term of directional engram synaptic connectivity from the BLA or vHPC to mPFC, but not that in the opposite direction, for retrieval of extinction memory. Fear renewal or spontaneous recovery switches the extinction engram construct from an accessible to inaccessible state, whereas additional extinction learning or optogenetic induction of long-term potentiation restores the directional engram connectivity and prevents the return of fear. Thus, the plasticity of engram construct underlies forgetting of extinction memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Extinção Psicológica , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Condicionamento Psicológico/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia
7.
Zhonghua Nan Ke Xue ; 29(9): 821-825, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-38639595

RESUMO

OBJECTIVE: Exploring the clinical efficacy, safety, and surgical techniques of two-way rendezvous and trenching method for transurethral holmium laser prostatectomy in the treatment of benign prostatic hyperplasia. METHODS: Retrospective analysis of clinical data on preoperative, intraoperative, and postoperative follow-up of 326 patients with benign prostatic hyperplasia who underwent two-way rendezvous and trenching method of transurethral holmium laser prostatectomy at the Urology Department of Wujin People's Hospital in Changzhou City from January 2020 to January 2023. RESULTS: Compared with preoperative measures, IPSS symptom score, quality of life (QoL) score, maximum urinary flow rate (Qmax), and residual urine volume (PVR) were significantly improved at 1, 6, and 12 months postoperatively (P<0.05). Thirty two patients with normal and regular sexual life pre-operation were observed. There were no significant changes in their IIEF-5 score and Erectile Hardness Scale (EHGS) score after surgery compared with pre-operation (P<0.05). There were 9 patients (28.12%) with retrograde ejaculation after surgery. CONCLUSION: The two-way rendezvous and trenching method of transurethral holmium laser prostatectomy is a safe and effective method for treating benign prostatic hyperplasia, with precise results, high safety, minimal trauma, and fast postoperative recovery.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Masculino , Humanos , Próstata , Hiperplasia Prostática/diagnóstico , Qualidade de Vida , Lasers de Estado Sólido/uso terapêutico , Estudos Retrospectivos , Ressecção Transuretral da Próstata/métodos , Resultado do Tratamento , Terapia a Laser/métodos , Hólmio
8.
Zhonghua Nan Ke Xue ; 29(10): 899-903, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38639659

RESUMO

OBJECTIVE: Comparison of clinical efficacy between transurethral holmium laser prostate enucleation (two-way rendezvous and trenching method) and transurethral plasma enucleation. METHODS: A total of 483 patients with benign prostatic hyperplasia who were admitted to our hospital from December 2019 to December 2022 were randomly divided into an observation group (245 cases) and a control group (238 cases) using a random number table method. The observation group underwent transurethral holmium laser prostatectomy, while the control group underwent transurethral plasma prostatectomy,evaluate the efficacy of two surgical methods. RESULT: The IPSS symptom score, quality of life (QOL) score, maximum urinary flow rate (Qmax), residual urine volume (PVR) and other indicators were significantly improved in both groups after 6 months of surgery compared to before (P<0.05), and there was no statistically significant difference between the two groups (P>0.05). The incidence of postoperative complications in the observation group was significantly lower than that in the control group (P<0.05). There was no statistically significant difference in sexual function and retrograde ejaculation between the two groups of patients(P>0.05). CONCLUSION: Both surgical methods have good surgical efficacy, but compared with prostate plasma resection, holmium laser prostatectomy can reduce intraoperative bleeding in patients with BPH, effectively shorten catheter retention time, patient hospitalization time, and postoperative bladder flushing time, resulting in higher quality of life and safety.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Masculino , Humanos , Hiperplasia Prostática/complicações , Qualidade de Vida , Lasers de Estado Sólido/uso terapêutico , Ressecção Transuretral da Próstata/métodos , Próstata/cirurgia , Terapia a Laser/métodos , Resultado do Tratamento , Hólmio
9.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242341

RESUMO

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

10.
Opt Lett ; 47(15): 3816-3819, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913322

RESUMO

The two-color strong-field mixing in gas medium is a widely used approach to generate bright broadband terahertz (THz) radiation. Here, we present a new, to the best of our knowledge, and counterintuitive method to promote THz performance in the two-color scheme. Beyond our knowledge that the maximum THz generation occurs with two-color foci overlapped, we found that, when the foci of two-color beams are noticeably separated along the propagation axis resulting in cascading plasmas, the THz conversion efficiency is surged by one order of magnitude and the bandwidth is stretched by more than two times, achieving 10-3 conversion efficiency and >100 THz bandwidth under the condition of 800/400 nm, ∼35 fs driving lasers. With the help of the pulse propagation equation and photocurrent model, the observations can be partially understood by the compromise between THz generation and absorption due to the spatial redistribution of laser energy in cascading plasmas. The present method can be extended to a mid-infrared driving laser, and new records of THz peak power and conversion efficiency are expected.

11.
Inorg Chem ; 61(48): 19232-19239, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395178

RESUMO

We report two novel titanium-based pnictide oxide compounds (EuF)2Ti2Pn2O (Pn = Sb, Bi), which are synthesized by replacing Sr2+ in (SrF)2Ti2Pn2O [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508] with Eu2+ using a solid-state reaction. (EuF)2Ti2Sb2O exhibits an obvious anomaly in resistivity and heat capacity at T ∼ 195 K, which may arise from the spin-density wave/charge-density wave instability. Similar features are also observed in BaTi2Pn2O, (SrF)2Ti2Pn2O, and Na2Ti2Pn2O (Pn = As and Sb) [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508, Ozawa, T. C. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors. Sci. Technol. Adv. Mater. 2008, 9, 033003, Wang, X. F. Structure and physical properties for a new layered pnictide-oxide: BaTi2As2O. J. Phys.: Condens. Matter. 2010, 22, 075702, and Xu, H. C. Electronic structure of the BaTi2As2O parent compound of the titanium-based oxypnictide superconductor. Phys. Rev. B 2014, 89, 155108]. Magnetic susceptibility measurements indicate an antiferromagnetic transition at T ∼ 2.5 K for (EuF)2Ti2Sb2O. In particular, the electronic specific heat coefficients of both (EuF)2Ti2Sb2O and (EuF)2Ti2Bi2O are significantly enhanced compared to those of (SrF)2Ti2Pn2O, Na2Ti2Pn2O, and BaTi2Pn2O,1,5,6 which may be due to a strong electron correlation effect in this system. Thus, (EuF)2Ti2Pn2O (Pn = Sb, Bi) may provide new platforms for studying density wave, magnetic ordering, and electron correlation effects.

12.
Opt Express ; 29(5): 7494-7503, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726249

RESUMO

Wave plates based on metasurfaces have attracted intensive attention over the past decade owing to their compactness and design flexibility. Although various wave plates have been designed, their working wavelengths are fixed once they are made. Here we present a study on tunable wave plates based on phase-change metasurfaces made of Ge2Sb2Te5 nanopillar structures. The Ge2Sb2Te5 nanopillars can work as a high-efficiency transmissive half- or quarter-wave plate depending on their structural parameters. The working wavelength of wave plate can be tuned via the phase transition of Ge2Sb2Te5. Moreover, the polarization state of the transmitted light at a fixed wavelength can be modified by changing the crystallinity of Ge2Sb2Te5. The features suggest that tunable wave plates may have applications in optical modulators, molecular detection, and polarimetric imaging.

13.
Opt Express ; 29(21): 33245-33256, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809140

RESUMO

We theoretically investigate the atomic-orbital-resolved vortex-shaped photoelectron momentum distributions (PMDs) and ionization probabilities by solving the two-dimensional time-dependent Schrödinger equation (2D-TDSE) of neon in a pair of delayed counter-rotating circularly polarized attosecond pulses. We found that the number of spiral arms in vortex patterns is twice the number of absorbed photons when the initial state is the ψm=±1 state, which satisfy a change from c2n+2 to c2n (n is the number of absorbed photons) rotational symmetry of the vortices if the 2p state is replaced by 2p+ or 2p- states. For two- and three-photon ionization, the magnetic quantum number dependence of ionization probabilities is quite weak. Interestingly, single-photon ionization is preferred when the electron and laser field corotate and ionization probabilities of 2p- is much larger than that of 2p+ if the proper time delay and wavelength are used. The relative ratio of ionization probabilities between 2p- and 2p+ is insensitive to laser peak intensity, which can be controlled by changing the wavelength, time delay, relative phase and amplitude ratio of two attosecond pulses.

14.
Opt Lett ; 46(7): 1584-1587, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793493

RESUMO

The inevitable noise and decoherence in the quantum circuit hinder its scalable development, so quantum error correction and quantumness protection for multiple controllable qubits system are necessary. The flatband in the dispersion relation, based on its inherent locality and high degenerate energy band structure, shows non-diffractive transport properties in the line spectrum and has the potential possibility to protect quantum resources in special lattices. The pioneer work has proved that the topologically boundary state is robust to protect the quantumness from disorder and perturbation, which inspires that quantumness can be protected anywhere in a periodic structure, including the boundary state and bulk state. Here, we show the topological protection of quantum resources with different state combinations in a sawtooth lattice. Photons can be localized at any degenerate eigenmode, and the localized effect is determined by only one parameter, without additional modulations. We show a high violation of Cauchy-Schwarz inequality up to 35 standard deviations by measuring cross correlation and auto-correlation of correlated photons. We verify that the topological protection is robust to different wavelengths of correlated photons. Our results suggest an alternative way of exploring topological protection in flatband and bulk state, demonstrating the powerful ability of topological photonics to protect quantum resources.

15.
Phys Rev Lett ; 127(14): 147401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652196

RESUMO

Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.

16.
Histochem Cell Biol ; 154(2): 215-230, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32382787

RESUMO

Ovarian cancer is a severe malignant tumour of the female genital organs. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) expression is correlated with the occurrence and progression of multiple cancers. Here, we assessed STEAP1 expression in ovarian cancer and explored the relationship between STEAP1 and ovarian cancer progression. We used immunohistochemistry and public databases to test STEAP1 expression in normal human ovarian tissues, benign ovarian tumours, and ovarian cancer. The expression of STEAP1 and epithelial-to-mesenchymal transition (EMT)-related genes was analysed using immunocytochemistry, quantitative reverse transcription polymerase chain reaction, and western blotting in ovarian cancer cell lines. Lentivirus was used to knockdown and overexpress STEAP1. Invasion, migration, growth, clonogenicity, and apoptosis were assessed using transwell assay, growth curve, plate clone formation assay, and flow cytometry. We used a tumour xenograft to verify the relationship between STEAP1 and in vivo ovarian cancer cell growth. Matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) activities were examined using Matrix metalloproteinase zymography assay. STEAP1 was highly expressed in the human ovarian cancer tissues and a highly invasive ovarian cancer cell line. Overexpression of STEAP1 was related to poor prognosis in ovarian cancer patients. Down-regulation of STEAP1 suppressed the invasion, migration, proliferation, clonogenicity, EMT progression in human ovarian cancer cells and xenograft tumour growth in vivo, but it enhanced apoptosis. In human ovarian cancer, the STEAP1 gene is highly expressed, and its function is correlated with human ovarian cancer cell metastasis and growth. STEAP1 may be a possible target for suppressing ovarian cancer metastasis.


Assuntos
Antígenos de Neoplasias/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/secundário , Oxirredutases/genética , Animais , Apoptose , Proliferação de Células , Feminino , Regulação da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/secundário , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
17.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357035

RESUMO

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

18.
J Cell Biochem ; 120(7): 11172-11189, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30714206

RESUMO

Six-transmembrane epithelial antigen of the prostate 1 (STEAP1), a member of the STEAP family, is a general tumor antigen. However, no information has been available to date regarding the function of STEAP1 in the progression of endometrial carcinoma. In this study, we used in vitro and in vivo strategies to prove that STEAP1 plays an important role in the progression of endometrial carcinoma. Immunohistochemistry, immunocytochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis were used to detect the expression of STEAP1 in normal endometrial cells and endometrial cancer cell lines. The progression of the cell cycle, plate clone formation assay, and transwell migration and invasion assays were performed to examine the effects of STEAP1 on cell proliferation, clonogenicity, migration, and their invasive capacity. In addition, we confirmed that STEAP1 was tightly correlated with the development of tumor in vivo. The relationship between epithelial to mesenchymal transition (EMT) and STEAP1 expression was evaluated by RT-qPCR and Western blot analysis. Matrix metalloproteinase (MMP) zymography assay was used to detect the activities of MMP2 and MMP9. STEAP1 was restrictively expressed in endometrial carcinoma and downregulation of the STEAP1 gene increased proliferation and clonogenicity, as well as promoted cell migration, invasion, and the progress of EMT. STEAP1 is downregulated in endometrial carcinoma and can restrict migration and invasion of endometrial carcinoma cells. Overall, STEAP1 may be an ideal target for tumor therapy and diagnosis in the future.

19.
Opt Express ; 27(5): 5982-5989, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876192

RESUMO

Quantum key distribution (QKD), harnessing quantum physics and optoelectronics, may promise unconditionally secure information exchange in theory. Recently, theoretical and experimental advances in measurement-device-independent (MDI)-QKD have successfully closed the physical back door in detection terminals. However, the issues of scalability, stability, cost and loss prevent QKD systems from widespread application in practice. Here, we propose and experimentally demonstrate a solution to build a star-topology quantum access network with an integrated server. By using femtosecond laser direct writing techniques, we construct integrated circuits for all the elements of Bell state analyzer together and are able to integrate 10 such analyzer structures on a single photonic chip. The measured high-visibility Bell state analysis suggests the integrated server as a promising platform for the practical application of MDI-QKD network.

20.
Phys Rev Lett ; 122(1): 013903, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012669

RESUMO

The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)NPAHAX1745-247310.1038/nphys3482], which is intrinsically induced by the disorder-immune chiral symmetry and can be reflected by the photon statistics. The lattice topology was further identified as a decisive role in determining the photon statistics when the chiral symmetry is satisfied. Being very distinct from one-dimensional lattices, the photon statistics in ring lattices are dictated by its parity, i.e., odd or even sited. Here, we for the first time experimentally observe a parity-induced thermalization gap in strongly disordered ring photonic structures. In a limited scale, though the light tends to be localized, we are still able to find clear evidence of the parity-dependent disorder-immune chiral symmetry and the resulting thermalization gap by measuring photon statistics, while strong disorder-induced Anderson localization overwhelms such a phenomenon in larger-scale structures. Our results shed new light on the relation among symmetry, disorder, and localization, and may inspire new resources and artificial devices for information processing and quantum control on a photonic chip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA