Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(36): 19068-78, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422824

RESUMO

Post-translational modification of steroid receptors allows fine-tuning different properties of this family of proteins, including stability, activation, or interaction with co-regulators. Recently, a novel effect of phosphorylation on steroid receptor biology was described. Phosphorylation of human mineralocorticoid receptor (MR) on Ser-843, a residue placed on the ligand binding domain, lowers affinity for agonists, producing inhibition of gene transactivation. We now show that MR inhibition by phosphorylation occurs even at high agonist concentration, suggesting that phosphorylation may also impair coupling between ligand binding and receptor activation. Our results demonstrate that agonists are able to induce partial nuclear translocation of MR but fail to produce transactivation due at least in part to impaired co-activator recruitment. The inhibitory effect of phosphorylation on MR acts in a dominant-negative manner, effectively amplifying its functional effect on gene transactivation.


Assuntos
Núcleo Celular/metabolismo , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Substituição de Aminoácidos , Animais , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Ativação Transcricional/efeitos dos fármacos
2.
J Pers Med ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929847

RESUMO

El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.

3.
Endocrinology ; 158(11): 4047-4063, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938454

RESUMO

The enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11ß-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11ß-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11ß-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11ß-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11ß-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11ß-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11ß-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11ß-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11ß-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Hidrocortisona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Sumoilação , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores de Mineralocorticoides/química , Ativação Transcricional/efeitos dos fármacos
4.
Endocrinology ; 157(6): 2515-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27100623

RESUMO

The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Histona Desacetilases/metabolismo , Receptores de Mineralocorticoides/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Chlorocebus aethiops , Proteínas de Choque Térmico HSP90/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Camundongos , Simulação de Dinâmica Molecular , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ativação Transcricional
5.
PLoS One ; 8(9): e73737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040049

RESUMO

Aldosterone binds to the mineralocorticoid receptor (MR) and exerts pleiotropic effects beyond enhancing renal sodium reabsorption. Excessive mineralocorticoid signaling is deleterious during the evolution of cardiac failure, as evidenced by the benefits provided by adding MR antagonists (MRA) to standard care in humans. In animal models of cardiovascular diseases, MRA reduce cardiac fibrosis. Interestingly diuretics such as torasemide also appear efficient to improve cardiovascular morbidity and mortality, through several mechanisms. Among them, it has been suggested that torasemide could block aldosterone binding to the MR. To evaluate whether torasemide acts as a MRA in cardiomyocytes, we compared its effects with a classic MRA such as spironolactone. We monitored ligand-induced nuclear translocation of MR-GFP and MR transactivation activity in the cardiac-like cell line H9C2 using a reporter gene assay and known endogenous aldosterone-regulated cardiac genes. Torasemide did not modify MR nuclear translocation. Aldosterone-induced MR transactivation activity was reduced by the MRA spironolactone, not by torasemide. Spironolactone blocked the induction by aldosterone of endogenous MR-responsive genes (Sgk-1, PAI-1, Orosomucoid-1, Rgs-2, Serpina-3, Tenascin-X), while torasemide was ineffective. These results show that torasemide is not an MR antagonist; its association with MRA in heart failure may however be beneficial, through actions on complementary pathways.


Assuntos
Aldosterona/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Sulfonamidas/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Diuréticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Luciferases/genética , Luciferases/metabolismo , Camundongos , Microscopia Confocal , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Orosomucoide/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Receptores de Mineralocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/genética , Espironolactona/farmacologia , Tenascina/genética , Torasemida , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA