RESUMO
BACKGROUND: Spastic paraplegia 11 (SPG11) is the most prevalent form of autosomal recessive hereditary spastic paraplegia, resulting from biallelic pathogenic variants in the SPG11 gene (MIM *610844). METHODS: The proband is a 36-year-old female referred for genetic evaluation due to cognitive dysfunction, gait impairment, and corpus callosum atrophy (brain MRI was normal at 25-years-old). Diagnostic approaches included CGH array, next-generation sequencing, and whole transcriptome sequencing. RESULTS: CGH array revealed a 180 kb deletion located upstream of SPG11. Sequencing of SPG11 uncovered two rare single nucleotide variants: the novel variant c.3143C>T in exon 17 (in cis with the deletion), and the previously reported pathogenic variant c.6409C>T in exon 34 (in trans). Whole transcriptome sequencing revealed that the variant c.3143C>T caused exon 17 skipping. CONCLUSION: We report a novel sequence variant in the SPG11 gene resulting in exon 17 skipping, which, along with a nonsense variant, causes Spastic Paraplegia 11 in our proband. In addition, a deletion upstream of SPG11 was identified in the patient, whose implication in the phenotype remains uncertain. Nonetheless, the deletion apparently affects cis-regulatory elements of the gene, suggesting a potential new pathogenic mechanism underlying the disease in a subset of undiagnosed patients. Our findings further support the hypothesis that the origin of thin corpus callosum in patients with SPG11 is of progressive nature.