Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Plant J ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145515

RESUMO

Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.

2.
Langmuir ; 40(37): 19631-19643, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39234638

RESUMO

The environmental pollution problem caused by azo dyes urgently needs to be solved. Fe3O4@SiO2/poly(vinyl alcohol) (PVA) membranes were prepared via an electrostatic spinning process. By blending the prepared Fe3O4@SiO2 nanoparticles with PVA, a uniform distribution of Fe3O4@SiO2 nanoparticles within the fibers was achieved, effectively preventing the aggregation of the nanoparticles and demonstrating excellent adsorption performance toward the azo anionic dye methyl orange (MO). The adsorption isotherms and kinetic data for Fe3O4@SiO2/PVA adsorbed MO were consistent with Langmuir and the pseudo-second-order model, respectively. Owing to the electrostatic attraction, hydrogen bonding, and pore-filling effect, Fe3O4@SiO2/PVA effectively removed MO from water, with a maximum adsorption amount of 349.896 mg/g at 25 °C. Very importantly, the Fe3O4@SiO2/PVA membrane can be regenerated and reused efficiently, with no significant decrease in adsorption capacity after five adsorption cycles. In addition, response surface methodology (RSM) was used to analyze the effects of various factors on the MO adsorption performance of Fe3O4@SiO2/PVA membranes, as well as the interactions of various factors. This research indicated that Fe3O4@SiO2/PVA membranes are promising adsorbents for MO due to their low cost, ease of regeneration, and environmental friendliness.

3.
Toxicol Appl Pharmacol ; 472: 116574, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271225

RESUMO

Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Lignanas , Neoplasias Hepáticas , Humanos , Piroptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Caspase 3/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Lignanas/farmacologia , Células Matadoras Naturais/metabolismo
4.
Cell Biol Toxicol ; 39(3): 729-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34405320

RESUMO

Hepatocyte senescence is a key event participating in the progression of alcoholic liver disease. Autophagy is a critical biological process that controls cell fates by affecting cell behaviors like senescence. Pterostilbene is a natural compound with hepatoprotective potential; however, its implication for alcoholic liver disease was not understood. This study was aimed to investigate the therapeutic effect of pterostilbene on alcoholic liver disease and elucidate the potential mechanism. Our results showed that pterostilbene alleviated ethanol-triggered hepatocyte damage and senescence. Intriguingly, pterostilbene decreased the protein abundance of cellular communication network factor 1 (CCN1) in ethanol-exposed hepatocytes, which was essential for pterostilbene to execute its anti-senescent function. In vivo studies verified the anti-senescent effect of pterostilbene on hepatocytes of alcohol-intoxicated mice. Pterostilbene also relieved senescence-associated secretory phenotype (SASP), redox imbalance, and steatosis by suppressing hepatic CCN1 expression. Mechanistically, pterostilbene-forced CCN1 reduction was dependent on posttranscriptional regulation via autophagy machinery but not transcriptional regulation. To be specific, pterostilbene restored autophagic flux in damaged hepatocytes and activated p62-mediated selective autophagy to recognize and lead CCN1 to autolysosomes for degradation. The protein abundance of Sestrin2 (SESN2), a core upstream modulator of autophagy pathway, was decreased in ethanol-administrated hepatocytes but rescued by co-treatment with pterostilbene. Induction of SESN2 protein by pterostilbene rescued ethanol-triggered autophagic dysfunction in hepatocytes, which then reduced senescence-associated markers, postponed hepatocyte senescence, and relieved alcohol-caused liver injury and inflammation. In conclusion, this work discovered a novel compound pterostilbene with therapeutic implications for alcoholic liver disease and uncover its underlying mechanism.


Assuntos
Etanol , Hepatócitos , Camundongos , Animais , Etanol/metabolismo , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado , Autofagia
5.
Pharm Biol ; 61(1): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37010139

RESUMO

CONTEXT: Schisandrin B (Sch B), an active ingredient from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, possesses diverse pharmacological activities including antitumor, anti-inflammation, and hepatoprotection. OBJECTIVE: To explore the effect of Sch B on activated HSCs senescence in hepatic fibrosis and the mechanisms implicated. MATERIALS AND METHODS: ICR mice with CCl4-induced hepatic fibrosis were supplemented with Sch B (40 mg/kg) for 30 d and LX2 cells were treated with Sch B (5, 10 and 20 µM) for 24 h. Cellular senescence was assessed by senescence-related indicators senescence-associated ß-galactosidase (SA-ß-gal) activity and the expression of p16, p21, p53, γ-H2AX, H3K9me3, TERT, TRF1, and TRF2. Ferric ammonium citrate (FAC) and NCOA4 siRNA were used to evaluate the mechanisms underlying Sch B's regulation of cellular senescence. RESULTS: Sch B (40 mg/kg) reduced serum levels of AST and ALT (53.2% and 63.6%), alleviated hepatic collagen deposition, and promoted activated HSCs senescence in mice. Treatment with Sch B (20 µM) decreased cell viability to 80.38 ± 4.87% and elevated SA-ß-gal activity, with the levels of p16, p21 and p53 increased by 4.5-, 2.9-, and 3.5-fold and the levels of TERT, TRF1 and TRF2 decreased by 2.4-, 2.7-, and 2.6-fold in LX2 cells. FAC (400 µM) enhanced Sch B's effect mentioned above. NCOA4 siRNA weakened the effects of Sch B on iron deposition and HSCs senescence. CONCLUSIONS: Sch B could ameliorate hepatic fibrosis through the promotion of activated HSCs senescence, which might be attributed to its induction of NCOA4-mediated ferritinophagy and subsequent iron overload.


Assuntos
Células Estreladas do Fígado , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Camundongos Endogâmicos ICR , Cirrose Hepática/patologia , Senescência Celular , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
6.
J Cell Mol Med ; 25(15): 7354-7366, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190396

RESUMO

Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non-alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD-fed Golden hamsters and PA-treated LO2 cells as manifested by increased levels of senescence marker SA-ß-gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ-H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes-associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA-treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up-regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.


Assuntos
Senescência Celular , Hepatócitos/metabolismo , Ferro/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Longo não Codificante/genética , Proteínas de Sinalização YAP/metabolismo , Animais , Linhagem Celular , Cricetinae , Dano ao DNA , Hepatócitos/fisiologia , Humanos , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/genética , RNA Longo não Codificante/metabolismo , Proteínas de Sinalização YAP/genética
7.
J Cell Mol Med ; 24(9): 5304-5316, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32243714

RESUMO

A growing number of studies recognize that long non-coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA-regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo-like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11-50D9.3), whose expression was dramatically down-regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly-ADP-ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib-induced lncRNA PLK4 could function as a tumour suppressor gene by Yes-associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib-induced anti-tumor effect, and suggest a potential clinical use of talazoparib-targeted lncRNA PLK4/YAP-dependent cellular senescence for the treatment of HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Senescência Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Ftalazinas/uso terapêutico , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Senescência Celular/efeitos dos fármacos , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ftalazinas/farmacologia , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
8.
Apoptosis ; 24(11-12): 905-920, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31538267

RESUMO

Hepatic stellate cell (HSC) activation plays an indispensable role in hepatic fibrosis. Inducing apoptosis of activated HSCs can attenuate or reverse fibrogenesis. In this study, we initially found that oroxylin A (OA) protected CCl4-induced liver injury accompanied by endoplasmic reticulum stress (ERS) activation of HSCs in mice. In vitro, OA treatment markedly reduced fibrogenesis by modulating extracellular matrix synthesis and degradation. OA inhibited cell proliferation and induced cell cycle arrest of HSCs at S phase. Further, OA was observed to induce HSC apoptosis, as indicated by caspase activation. Using the eIF2α dephosphorylation inhibitor salubrinal, we found that ERS pathway activation was required for OA to induce HSC apoptosis. ERS-related proteins were significantly upregulated by OA treatment, and salubrinal abrogated the effects of OA on HSCs. Thus, we inferred that OA attenuated HSC activation by promoting ERS. In vivo, inhibition of ERS by salubrinal partly abrogated the hepatoprotective effect of OA in CCl4-treated mice. In conclusion, our findings suggest a role for ERS in the mechanism underlying amelioration of hepatic fibrosis by OA.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonoides/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Tetracloreto de Carbono , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Colágeno/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Fator de Iniciação 2 em Eucariotos/metabolismo , Flavonoides/uso terapêutico , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tioureia/análogos & derivados , Tioureia/farmacologia
9.
IUBMB Life ; 71(11): 1740-1750, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31265202

RESUMO

Alcoholic liver disease (ALD) is generated from excessive alcohol consumption, characterized by hepatic steatosis. Mechanistically, excessive hepatic lipid accumulation was attributed to the aberrant lipin-1 signaling during the development of alcoholic steatosis in rodent species and human. Dihydroartemisinin (DHA) has been recently identified to relieve hepatocytes necrosis and prevent from hepatic steatosis in alcohol-induced liver diseases; however, the role of DHA in ALD has not been elucidated completely. Therefore, this study was aimed to further identify the potential mechanisms of pharmacological effects of DHA on ALD. Results demonstrated that DHA regulated the expression and nucleocytoplasmic shuttling of lipin-1 in mice with chronic ethanol exposure. Results confirmed that the disruption of lipin-1 signaling abolished the suppression of DHA on alcohol-induced hepatic steatosis. Interestingly, DHA also significantly improved liver injury, and inflammation mediated by lipin-1 signaling in chronic alcohol-fed mice. in vivo experiments further consolidated the concept that DHA protected against hepatocyte lipoapoptosis dependent on the regulation of nucleocytoplasmic shuttling of lipin-1 signaling, resulting in attenuated ratio of Lpin1 ß/α. Obvious increases in cell apoptosis were observed in alcohol-treated lipin1ß-overexpressed mice. Although DHA attenuated cell apoptosis, overexpression of lipin-1ß neutralized DHA action. DHA ameliorated activation of endoplasmic reticulum stress through inhibiting activation of JNK and CHOP, which was abrogated by overexpression of lipin-1ß. In summary, DHA significantly improved liver injury, steatosis and hepatocyte lipoapoptosis in chronic alcohol-fed mice via regulation of lipin-1 signaling.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Fígado Gorduroso Alcoólico/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Fosfatidato Fosfatase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfatidato Fosfatase/genética
10.
J Cell Biochem ; 119(2): 2258-2268, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857294

RESUMO

Angiogenesis of liver sinusoidal endothelial cells (LSECs) accompanies with hypoxia in liver fibrosis and they are of mutual promotion, which has raised wide concern. Here we established murine model of liver fibrosis and found that oroxylin A (40 mg/kg) could ameliorate angiogenesis in liver fibrosis may related to hypoxia inducible factor 1α (HIF-1α). The underlying mechanism was further investigated by isolating and culturing murine primary LSECs. Hypoxia induced vascular endothelial growth factor A (VEGF-A), angiopoietin 2 (Ang-2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) elevated in LSECs were reduced by oroxylin A or acriflavine (ACF, an HIF-1α inhibitor), indicating HIF-1α involved the angiogenesis of LSECs. Additionally, interference with Yes-associated protein (YAP) significant downregulated the protein expression of HIF-1α and VEGF-A, while YAP plasmid exhibited an opposite effect. We next found that oroxylin A inhibited hypoxia-induced nuclear translocation of YAP, which may influence the accumulation of HIF-1α and subsequently decrease transcription of downstream target gene including VEGF-A and Ang-2, thereby exerting an anti-angiogenic activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Flavonoides/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cirrose Hepática/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Fosfoproteínas/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Proteínas de Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Neovascularização Patológica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP
11.
Plant Cell Environ ; 41(12): 2858-2868, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30088270

RESUMO

Ethylene stimulates the exaggerated hook formation in etiolated seedlings. It has been reported that other phytohormones, such as jasmonate or gibberellins, could inhibit or coordinate hook formation, respectively. However, whether any environmental factors participate in this process is unknown. Here, we show that in darkness, high ambient temperature suppresses the ethylene-triggered exaggerated hook formation in wild-type plants and reduces the hook curvatures in constitutively ethylene responsive mutants. Interestingly, high temperature does not abrogate the activity of the central transcription factor EIN3, suggesting that high temperature acts downstream of ethylene signaling. Next, we show that the natural auxin levels in the hook regions are reduced and their asymmetric distributions are disturbed upon high temperature treatment. To explore the mechanisms for reducing auxin accumulation, we monitor the transcription of several genes encoding auxin biosynthesis related enzymes and find that most YUCCA genes are transcriptionally down-regulated. Finally, we show that the currently reported plant thermo-sensory components in light-grown plants (phytochrome or PIF4) are not sufficient for thermo-sensing in etiolated seedlings. We speculate that in darkness, plants sense high ambient temperature through a distinct mechanism. Taken together, we demonstrate that high temperature suppresses ethylene-induced exaggerated hook formation via the inhibition of local auxin activities.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Microscopia Confocal , Proteínas Nucleares/metabolismo , Plântula/metabolismo , Fatores de Transcrição/metabolismo
12.
IUBMB Life ; 68(7): 589-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27278959

RESUMO

Activation of hepatic stellate cells (HSCs) is characterized by expression of extracellular matrix and loss of adipogenic phenotype during liver fibrogenesis. Emerging evidence suggests that HSCs adopt aerobic glycolysis during activation. The present work aimed at investigating whether the anti-fibrogenic effects of curcumin was associated with interfering with glycolysis in HSCs. Primary rat HSCs were cultured in vitro. We demonstrated that inhibition of glycolysis by 2-deoxyglucose or galloflavin reduced the expression of α-smooth muscle actin (α-SMA) and α1(I)procollagen at both mRNA and protein levels, and increased the intracellular lipid contents and upregulated the gene and protein expression of adipogenic transcription factors C/EBPα and PPAR-γ in HSCs. Curcumin at 20 µM produced similar effects. Moreover, curcumin decreased the expression of hexokinase (HK), phosphofructokinase-2 (PFK2), and glucose transporter 4 (glut4), three key glycolytic parameters, at both mRNA and protein levels. Curcumin also reduced lactate production concentration-dependently in HSCs. Furthermore, curcumin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), but AMPK inhibitor BML-275 significantly abolished the curcumin downregulation of HK, PFK2, and glut4. In addition, curcumin inhibition of α-SMA and α1(I)procollagen was rescued by BML-275, and curcumin upregulation of C/EBPα and PPAR-γ was abrogated by BML-275. These results collectively indicated that curcumin inhibited glycolysis in an AMPK activation-dependent manner in HSCs. We revealed a novel mechanism for curcumin suppression of HSC activation implicated in antifibrotic therapy. © 2016 IUBMB Life, 68(7):589-596, 2016.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Curcumina/administração & dosagem , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Actinas/antagonistas & inibidores , Animais , Colágeno Tipo I/antagonistas & inibidores , Cadeia alfa 1 do Colágeno Tipo I , Desoxiglucose/biossíntese , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/biossíntese , Glicólise/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Hexoquinase/biossíntese , Humanos , Isocumarinas/administração & dosagem , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Fosfofrutoquinase-2/biossíntese , Ratos , Ratos Sprague-Dawley
13.
IUBMB Life ; 68(3): 220-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865509

RESUMO

As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of α-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Ductos Biliares/patologia , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Células Estreladas do Fígado/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
14.
Lab Invest ; 95(7): 790-803, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25938627

RESUMO

Accumulating evidence indicates that Hedgehog (Hh) signaling becomes activated in chronic liver injury and plays a role in the pathogenesis of hepatic fibrosis. Hepatic stellate cells (HSCs) are Hh-responsive cells and activation of the Hh pathway promotes transdifferentiation of HSCs into myofibroblasts. Targeting Hh signaling may be a novel therapeutic strategy for treatment of liver fibrosis. We previously reported that curcumin has potent antifibrotic effects in vivo and in vitro, but the underlying mechanisms are not fully elucidated. This study shows that curcumin downregulated Patched and Smoothened, two key elements in Hh signaling, but restored Hhip expression in rat liver with carbon tetrachloride-induced fibrosis and in cultured HSCs. Curcumin also halted the nuclear translocation, DNA binding, and transcription activity of Gli1. Moreover, the Hh signaling inhibitor cyclopamine, like curcumin, arrested the cell cycle, induced mitochondrial apoptosis, reduced fibrotic gene expression, restored lipid accumulation, and inhibited invasion and migration in HSCs. However, curcumin's effects on cell fate and fibrogenic properties of HSCs were abolished by the Hh pathway agonist SAG. Furthermore, curcumin and cyclopamine decreased intracellular levels of adenosine triphosphate and lactate, and inhibited the expression and/or function of several key molecules controlling glycolysis. However, SAG abrogated the curcumin effects on these parameters of glycolysis. Animal data also showed that curcumin downregulated glycolysis-regulatory proteins in rat fibrotic liver. These aggregated data therefore indicate that curcumin modulated cell fate and metabolism by disrupting the Hh pathway in HSCs, providing novel molecular insights into curcumin reduction of HSC activation.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Curcuma , Curcumina/uso terapêutico , Glicólise/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Receptores Patched , Fitoterapia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened
15.
IUBMB Life ; 67(8): 645-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305715

RESUMO

Alcoholic liver disease (ALD) is a common health problem worldwide, characterized by aberrant accumulation of lipid in hepatocytes. Inhibition of lipid accumulation has been well recognized as a promising strategy for ALD. Previous studies showed that curcumin has potential effect on ALD by regulating oxidative stress and ethanol metabolism. However, the effects of curcumin on lipid accumulation and its mechanism remain unclear. Recent researches have indicated that farnesoid X receptor (FXR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) have excellent effects on reducing lipid deposition. This study demonstrated that curcumin alleviated ethanol-induced liver injury by ameliorating activities of serum marker enzymes and inflammation. Moreover, curcumin alleviated the symptom of hyperlipidemia and hepatic steatosis via modulating the expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and peroxisome proliferator-activated receptor-alpha as well as the activity of carnitine palmitoyltransferase 1. Additionally, curcumin induced the expression of Nrf2 and FXR in liver, strongly implying close relationship between inhibitory effect of curcumin on hepatic steatosis and the above two genes. The following in vitro experiments further verified the protective effects of curcumin against hepatotoxicity and lipid accumulation in hepatocytes induced by ethanol. Gain- or loss-of-function analyses revealed Nrf2 and FXR mediated the effect of curcumin on lipid deposition in hepatocytes, and curcumin modulated the expression of FXR mediated by Nrf2. Collectively, we drew a conclusion that curcumin attenuated ALD by modulating lipid deposition in hepatocytes via a Nrf2/FXR activation-dependent mechanism. The findings make curcumin a potential agent for ALD and broaden the horizon of the molecular mechanism involved.


Assuntos
Curcumina/administração & dosagem , Fígado Gorduroso/tratamento farmacológico , Hepatopatias Alcoólicas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Linhagem Celular , Etanol/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Fator 2 Relacionado a NF-E2/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Ratos , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais/efeitos dos fármacos
18.
Sci Rep ; 14(1): 1217, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216581

RESUMO

Magnetic core-shell Fe3O4@SiO2 nanoparticles were synthesized by sol-gel method. Based on the characterization and experimental results, the adsorbent was found to have an average particle size of approximately 120 nm, a pore size range of 2-5 nm and superparamagnetic properties. It exhibited electrostatic and hydrogen bonding interactions during adsorption of methyl orange (MO). The adsorption of MO on the magnetic Fe3O4@SiO2 nanoparticles exhibited pseudo-second-order kinetics, the adsorption process is a spontaneous endothermic adsorption process, which conforms to the Langmuir adsorption isotherm model. he maximum amount of MO was adsorbed at pH = 2, T = 45 °C and t = 30 min, and the highest adsorption capacity was 182.503 mg/g; The unit adsorption capacity of the Fe3O4@SiO2 nanoparticles still reached 83% of the original capacity after 5 cycles, so the material was reusable and met the requirements of environmental protection. This study reveals the great potential of magnetic mesoporous nanoparticles for removal of dyes from wastewater.

19.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729465

RESUMO

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.


Assuntos
Quinolinas , Cinética , Estereoisomerismo , Quinolinas/química , Biocatálise , Brevibacterium/enzimologia , Especificidade por Substrato , Simulação de Dinâmica Molecular , Monoaminoxidase/metabolismo , Monoaminoxidase/química
20.
Commun Biol ; 6(1): 460, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101003

RESUMO

Apical hooks are functional innovations only observed in angiosperms, which effectively protect the apical meristems out of damage during plant seedlings penetrating soil covers. Acetyltransferase like protein HOOKLESS1 (HLS1) in Arabidopsis thaliana is required for hook formation. However, the origin and evolution of HLS1 in plants are still not solved. Here, we traced the evolution of HLS1 and found that HLS1 originated in embryophytes. Moreover, we found that Arabidopsis HLS1 delayed plant flowering time, in addition to their well-known functions in apical hook development and newly reported roles in thermomorphogenesis. We further revealed that HLS1 interacted with transcription factor CO and repressed the expression of FT to delay flowering. Lastly, we compared the functional divergence of HLS1 among eudicot (A. thaliana), bryophytes (Physcomitrium patens and Marchantia polymorpha) and lycophyte (Selaginella moellendorffii). Although HLS1 from these bryophytes and lycophyte partially rescued the thermomorphogenesis defects in hls1-1 mutants, the apical hook defects and early flowering phenotypes could not be reversed by either P. patens, M. polymorpha or S. moellendorffii orthologs. These results illustrate that HLS1 proteins from bryophytes or lycophyte are able to modulate thermomorphogenesis phenotypes in A. thaliana likely through a conserved gene regulatory network. Our findings shed new light on the understanding of the functional diversity and origin of HLS1, which controls the most attractive innovations in angiosperms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA