Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mod Pathol ; 36(8): 100196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100227

RESUMO

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nucleus segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nucleus segmentation and TME quantification within image patches. However, existing algorithms are computationally intensive and time consuming for WSI analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, and computation time. We validated the advantages of the system on 3 different tissue types: lung cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more prognostically significant than both the estrogen receptor status by immunohistochemistry and the progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Microambiente Tumoral , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Mama/patologia
2.
Br J Radiol ; 96(1150): 20230213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698582

RESUMO

Artificial intelligence is disrupting the field of mental healthcare through applications in computational psychiatry, which leverages quantitative techniques to inform our understanding, detection, and treatment of mental illnesses. This paper provides an overview of artificial intelligence technologies in modern mental healthcare and surveys recent advances made by researchers, focusing on the nascent field of digital psychiatry. We also consider the ethical implications of artificial intelligence playing a greater role in mental healthcare.


Assuntos
Transtornos Mentais , Serviços de Saúde Mental , Psiquiatria , Humanos , Inteligência Artificial , Atenção à Saúde/métodos , Transtornos Mentais/diagnóstico , Transtornos Mentais/terapia
3.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168368

RESUMO

Recent technology breakthroughs in spatially resolved transcriptomics (SRT) have enabled the comprehensive molecular characterization of cells whilst preserving their spatial and gene expression contexts. One of the fundamental questions in analyzing SRT data is the identification of spatially variable genes whose expressions display spatially correlated patterns. Existing approaches are built upon either the Gaussian process-based model, which relies on ad hoc kernels, or the energy-based Ising model, which requires gene expression to be measured on a lattice grid. To overcome these potential limitations, we developed a generalized energy-based framework to model gene expression measured from imaging-based SRT platforms, accommodating the irregular spatial distribution of measured cells. Our Bayesian model applies a zero-inflated negative binomial mixture model to dichotomize the raw count data, reducing noise. Additionally, we incorporate a geostatistical mark interaction model with a generalized energy function, where the interaction parameter is used to identify the spatial pattern. Auxiliary variable MCMC algorithms were employed to sample from the posterior distribution with an intractable normalizing constant. We demonstrated the strength of our method on both simulated and real data. Our simulation study showed that our method captured various spatial patterns with high accuracy; moreover, analysis of a seqFISH dataset and a STARmap dataset established that our proposed method is able to identify genes with novel and strong spatial patterns.

4.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568707

RESUMO

Head and neck squamous cell carcinoma (HNSCC), specifically in the oral cavity (oral squamous cell carcinoma, OSCC), is a common, complex cancer that significantly affects patients' quality of life. Early diagnosis typically improves prognoses yet relies on pathologist examination of histology images that exhibit high inter- and intra-observer variation. The advent of deep learning has automated this analysis, notably with object segmentation. However, techniques for automated oral dysplasia diagnosis have been limited to shape or cell stain information, without addressing the diagnostic potential in counting the number of cell layers in the oral epithelium. Our study attempts to address this gap by combining the existing U-Net and HD-Staining architectures for segmenting the oral epithelium and introducing a novel algorithm that we call Onion Peeling for counting the epithelium layer number. Experimental results show a close correlation between our algorithmic and expert manual layer counts, demonstrating the feasibility of automated layer counting. We also show the clinical relevance of oral epithelial layer number to grading oral dysplasia severity through survival analysis. Overall, our study shows that automated counting of oral epithelium layers can represent a potential addition to the digital pathology toolbox. Model generalizability and accuracy could be improved further with a larger training dataset.

5.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945650

RESUMO

The emerging field of spatially resolved transcriptomics (SRT) has revolutionized biomedical research. SRT quantifies expression levels at different spatial locations, providing a new and powerful tool to interrogate novel biological insights. An essential question in the analysis of SRT data is to identify spatially variable (SV) genes; the expression levels of such genes have spatial variation across different tissues. SV genes usually play an important role in underlying biological mechanisms and tissue heterogeneity. Currently, several computational methods have been developed to detect such genes; however, there is a lack of unbiased assessment of these approaches to guide researchers in selecting the appropriate methods for their specific biomedical applications. In addition, it is difficult for researchers to implement different existing methods for either biological study or methodology development. Furthermore, currently available public SRT datasets are scattered across different websites and preprocessed in different ways, posing additional obstacles for quantitative researchers developing computational methods for SRT data analysis. To address these challenges, we designed Spatial Transcriptomics Arena (STAr), an open platform comprising 193 curated datasets from seven technologies, seven statistical methods, and analysis results. This resource allows users to retrieve high-quality datasets, apply or develop spatial gene detection methods, as well as browse and compare spatial gene analysis results. It also enables researchers to comprehensively evaluate SRT methodology research in both simulated and real datasets. Altogether, STAr is an integrated research resource intended to promote reproducible research and accelerate rigorous methodology development, which can eventually lead to an improved understanding of biological processes and diseases. STAr can be accessed at https://lce.biohpc.swmed.edu/star/ .

6.
Genes (Basel) ; 14(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37107679

RESUMO

Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.


Assuntos
Aprendizado Profundo , Humanos , Amarelo de Eosina-(YS) , Hematoxilina , Fígado , Ploidias , Poliploidia
7.
JCO Clin Cancer Inform ; 7: e2300104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37956387

RESUMO

PURPOSE: Osteosarcoma research advancement requires enhanced data integration across different modalities and sources. Current osteosarcoma research, encompassing clinical, genomic, protein, and tissue imaging data, is hindered by the siloed landscape of data generation and storage. MATERIALS AND METHODS: Clinical, molecular profiling, and tissue imaging data for 573 patients with pediatric osteosarcoma were collected from four public and institutional sources. A common data model incorporating standardized terminology was created to facilitate the transformation, integration, and load of source data into a relational database. On the basis of this database, a data commons accompanied by a user-friendly web portal was developed, enabling various data exploration and analytics functions. RESULTS: The Osteosarcoma Explorer (OSE) was released to the public in 2021. Leveraging a comprehensive and harmonized data set on the backend, the OSE offers a wide range of functions, including Cohort Discovery, Patient Dashboard, Image Visualization, and Online Analysis. Since its initial release, the OSE has experienced an increasing utilization by the osteosarcoma research community and provided solid, continuous user support. To our knowledge, the OSE is the largest (N = 573) and most comprehensive research data commons for pediatric osteosarcoma, a rare disease. This project demonstrates an effective framework for data integration and data commons development that can be readily applied to other projects sharing similar goals. CONCLUSION: The OSE offers an online exploration and analysis platform for integrated clinical, molecular profiling, and tissue imaging data of osteosarcoma. Its underlying data model, database, and web framework support continuous expansion onto new data modalities and sources.


Assuntos
Gerenciamento de Dados , Osteossarcoma , Criança , Humanos , Bases de Dados Factuais , Genômica , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA