Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(22): 226401, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877910

RESUMO

1T-transition metal dichalcogenides (TMDs) have been an exciting platform for exploring the intertwinement of charge density waves and strong correlation phenomena. While the David star structure has been conventionally considered as the underlying charge order in the literature, recent scanning tunneling probe experiments on several monolayer 1T-TMD materials have motivated a new, alternative structure, namely, the anion-centered David star structure. In this Letter, we show that this novel anion-centered David star structure manifestly breaks inversion symmetry, resulting in flat bands with pronounced Rashba spin-orbit couplings. These distinctive features unlock novel possibilities and functionalities for 1T-TMDs, including the giant spin Hall effect, the emergence of Chern bands, and spin liquid that spontaneously breaks crystalline rotational symmetry. Our findings establish promising avenues for exploring emerging quantum phenomena of monolayer 1T-TMDs with this novel noncentrosymmetric structure.

2.
Nano Lett ; 23(17): 8029-8034, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651727

RESUMO

We demonstrate the systematic tuning of a trivial insulator into a Mott insulator and a Mott insulator into a correlated metallic and a pseudogap state, which emerge in a quasi-two-dimensional electronic system of 1T-TaS2 through strong electron correlation. The band structure evolution is investigated upon surface doping by alkali adsorbates for two distinct phases occurring at around 220 and 10 K by angle-resolved photoelectron spectroscopy. We find contrasting behaviors upon doping that corroborate the fundamental difference of two electronic states: while the antibonding state of the spin-singlet insulator at 10 K is partially occupied to produce an emerging Mott insulating state, the presumed Mott insulating state at 220 K evolves into a correlated metallic state and then a pseudogap state. The work indicates that surface doping onto correlated 2D materials can be a powerful tool to systematically engineer a wide range of correlated electronic phases.

3.
Nano Lett ; 22(19): 7902-7909, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162122

RESUMO

Strongly interacting electrons in hexagonal and kagome lattices exhibit rich phase diagrams of exotic quantum states, including superconductivity and correlated topological orders. However, material realizations of these electronic states have been scarce in nature or by design. Here, we theoretically propose an approach to realize artificial lattices by metal adsorption on a 2D Mott insulator 1T-TaS2. Alkali, alkaline-earth, and group 13 metal atoms are deposited in (√3 × âˆš3)R30° and 2 × 2 TaS2 superstructures of honeycomb- and kagome-lattice symmetries exhibiting Dirac and kagome bands, respectively. The strong electron correlation of 1T-TaS2 drives the honeycomb and kagome systems into correlated topological phases described by Kane-Mele-Hubbard and kagome-Hubbard models. We further show that the 2/3 or 3/4 band filling of Mott Dirac and flat bands can be achieved with a proper concentration of Mg adsorbates. Our proposal may be readily implemented in experiments, offering an attractive condensed-matter platform to exploit the interplay of correlated topological order and superconductivity.

4.
Nano Lett ; 21(22): 9468-9475, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34747625

RESUMO

Nonvanishing Berry curvature dipole (BCD) and persistent spin texture (PST) are intriguing physical manifestations of electronic states in noncentrosymmetric 2D materials. The former induces a nonlinear Hall conductivity while the latter offers a coherent spin current. Based on density-functional-theory (DFT) calculations, we demonstrate the coexistence of both phenomena in a Bi(110) monolayer with a distorted phosphorene structure. Both effects are concurrently enhanced due to the strong spin-orbit coupling of Bi while the structural distortion creates internal in-plane ferroelectricity with inversion asymmetry. We further succeed in fabricating a Bi(110) monolayer in the desired phosphorene structure on the NbSe2 substrate. Detailed atomic and electronic structures of the Bi(110)/NbSe2 heterostructure are characterized by scanning tunneling microscopy/spectroscopy and angle-resolved-photoemission spectroscopy. These results are consistent with DFT calculations which indicate the large BCD and PST are retained. Our results suggest the Bi(110)/NbSe2 heterostructure as a promising platform to exploit nonlinear Hall and coherent spin transport properties together.

5.
Phys Rev Lett ; 126(19): 196405, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047567

RESUMO

In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way to unambiguously distinguish a paradigmatic correlated insulator, a Mott insulator, from a trivial band insulator based on their distinct chemical behavior for a surface adsorbate using 1T-TaS_{2}, which has been debated between a spin-frustrated Mott insulator or a spin-singlet trivial insulator. We start from the observation of different sizes of spectral gaps on different surface terminations and show that potassium adatoms on these two surface layers behave in totally different ways. This can be straightforwardly understood from distinct properties of Mott and band insulators due to the fundamental difference of the half- and full-filled orbitals involved, respectively. This work not only solves an outstanding problem in this particularly interesting material but also provides a simple touchstone to identify the correlated ground state of electrons experimentally.

6.
Phys Rev Lett ; 125(9): 096403, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915631

RESUMO

Effects of electron many-body interactions amplify in an electronic system with a narrow bandwidth opening a way to exotic physics. A narrow band in a two-dimensional (2D) honeycomb lattice is particularly intriguing as combined with Dirac bands and topological properties but the material realization of a strongly interacting honeycomb lattice described by the Kane-Mele-Hubbard model has not been identified. Here we report a novel approach to realize a 2D honeycomb-lattice narrow-band system with strongly interacting 5d electrons. We engineer a well-known triangular lattice 2D Mott insulator 1T-TaS_{2} into a honeycomb lattice utilizing an adsorbate superstructure. Potassium (K) adatoms at an optimum coverage deplete one-third of the unpaired d electrons and the remaining electrons form a honeycomb lattice with a very small hopping. Ab initio calculations show extremely narrow Z_{2} topological bands mimicking the Kane-Mele model. Electron spectroscopy detects an order of magnitude bigger charge gap confirming the substantial electron correlation as confirmed by dynamical mean field theory. It could be the first artificial Mott insulator with a finite spin Chern number.

7.
Nano Lett ; 18(3): 1972-1977, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29461837

RESUMO

Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y2C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y2C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y2C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.

8.
Phys Rev Lett ; 120(13): 136403, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694185

RESUMO

Dirac, triple-point, and Weyl fermions represent three topological semimetal phases, characterized with a descending degree of band degeneracy, which have been realized separately in specific crystalline materials with different lattice symmetries. Here we demonstrate an alloy engineering approach to realize all three types of fermions in one single material system of MgTa_{2-x}Nb_{x}N_{3}. Based on symmetry analysis and first-principles calculations, we map out a phase diagram of topological order in the parameter space of alloy concentration and crystalline symmetry, where the intrinsic MgTa_{2}N_{3} with the highest symmetry hosts the Dirac semimetal phase, which transforms into the triple-point and then the Weyl semimetal phases with increasing Nb concentration that lowers the crystalline symmetries. Therefore, alloy engineering affords a unique approach for the experimental investigation of topological transitions of semimetallic phases manifesting different fermionic behaviors.

9.
Nano Lett ; 17(7): 4359-4364, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28628330

RESUMO

Tunable spin transport in nanodevices is highly desirable to spintronics. Here, we predict existence of quantum spin Hall effects and tunable spin transport in As-graphane, based on first-principle density functional theory and tight binding calculations. Monolayer As-graphane is constituted by using As adsorbing on graphane with honeycomb H vacancies. Owing to the surface strain, monolayer As-graphane nanoribbons will self-bend toward the graphane side. The naturally curved As-graphane nanoribbons then exhibit unique spin transport properties, distinctively different from the flat ones, which is a two-dimensional topological insulator. Under external stress, one can realize tunable spin transport in curved As-graphane nanoribon arrays. Such intriguing mechanical bending induced spin flips can offer promising applications in the future nanospintronics devices.

10.
Nano Lett ; 16(10): 6584-6591, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622311

RESUMO

MXenes are a large family of two-dimensional (2D) early transition metal carbides that have shown great potential for a host of applications ranging from electrodes in supercapacitors and batteries to sensors to reinforcements in polymers. Here, on the basis of first-principles calculations, we predict that Mo2MC2O2 (M = Ti, Zr, or Hf), belonging to a recently discovered new class of MXenes with double transition metal elements in an ordered structure, are robust quantum spin Hall (QSH) insulators. A tight-binding (TB) model based on the dz2-, dxy-, and dx2-y2-orbital basis in a triangular lattice is also constructed to describe the QSH states in Mo2MC2O2. It shows that the atomic spin-orbit coupling (SOC) strength of M totally contributes to the topological gap at the Γ point, a useful feature advantageous over the usual cases where the topological gap is much smaller than the atomic SOC strength based on the classic Kane-Mele (KM) or Bernevig-Hughes-Zhang (BHZ) model. Consequently, Mo2MC2O2 show sizable gaps from 0.1 to 0.2 eV with different M atoms, sufficiently large for realizing room-temperature QSH effects. Another advantage of Mo2MC2O2 MXenes lies in their oxygen-covered surfaces which make them antioxidative and stable upon exposure to air.

11.
Phys Chem Chem Phys ; 18(12): 8637-42, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26947010

RESUMO

We investigate the edge states of quantum spin-Hall phase Bi(111) bilayer nano-ribbons (BNRs) and their spin-rectifying effect using first-principles calculations and a non-equilibrium transport method. As low-dimensional materials, BNRs have tunable electronic properties, which are not only dependent on the edge shape, chemical passivation, or external electric fields but also governed by geometrical deformation. Depending on the passivation types, the interaction of the helical edge states in BNRs exhibits various patterns, enabling the valley engineering of the Dirac cones. In addition, the spin texture of the Dirac state is significantly tuned by edge passivation, external electric fields and geometric deformations. We demonstrate that curved BNRs can be used as the spin valves to rectify the electric currents via the edge states. Our results provide a practical way of utilizing two-dimensional topological insulator Bi bilayers for spintronic devices.

12.
Adv Mater ; 36(25): e2313803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482920

RESUMO

Localized topological modes such as solitons, Majorana Fermions, and skyrmions are attracting great interest as robust information carriers for future devices. Here, a novel conserved quantity for topological domain wall networks of a Z2 × Z2 order generated with spin-polarized current in Sr2VO3FeAs is discovered. Domain walls are mobilized by the scanning tunneling current, which also observes in atomic scale active dynamics of domain wall vertices including merge, bifurcation, pair creation, and annihilation. Within this dynamics, the product of the topological complex charges defined for domain wall vertices is conserved with a novel boundary-charge correspondence rule. These results may open an avenue toward topological electronics based on domain wall vertices in generic Z2 × Z2 systems.

13.
ACS Nano ; 18(34): 23189-23195, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150975

RESUMO

Adsorption of alkali atoms onto material surfaces is widely utilized for controlling electronic properties and is particularly effective for two-dimensional materials. While tuning the chemical potential and band gap and creating quantum-confined states are well established for alkali adsorption on semiconductors, the effects on semimetallic systems remain largely elusive. Here, utilizing angle-resolved photoemission spectroscopy measurements and density functional theory calculations, we disclose the creation of two-dimensional electron gas and the quantum-confined Lifshitz transition at the surface of a Weyl semimetal Td-MoTe2 by potassium adsorption. Electrons from potassium adatoms are shown to be transferred mainly to the lowest unoccupied band within the gapped part of the Brillouin zone, which, in turn, induces strong surface band bending and quantum confinement in the topmost layer. The quantum-confined topmost layer evolves from a semimetal to a strong metal with a Lifshitz transition departing substantially from the bulk band. The present finding and its underlying mechanism can be exploited for the creation of electronic heterojunctions in van der Waals semimetals.

14.
ACS Nano ; 18(36): 24784-24791, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39178330

RESUMO

Excitons in semiconductors and molecules are widely utilized in photovoltaics and optoelectronics, and high-temperature coherent quantum states of excitons can be realized in artificial electron-hole bilayers and an exotic material of an excitonic insulator (EI). Here, we investigate the band gap evolution of a putative high-temperature EI Ta2NiSe5 upon surface doing by alkali adsorbates with angle-resolved photoemission and density functional theory (DFT) calculations. The conduction band of Ta2NiSe5 is filled by the charge transfer from alkali adsorbates, and the band gap decreases drastically upon the increase of metallic electron density. Our DFT calculation, however, reveals that there exist both structural and excitonic contributions to the band gap tuned. While electron doping reduces the band gap substantially, it alone is not enough to close the band gap. In contrast, the structural distortion induced by the alkali adsorbate plays a critical role in the gap closure. This work indicates a combined electronic and structural nature for the EI phase of the present system and the complexity of surface doping beyond charge transfer.

15.
Nanoscale ; 15(31): 12787-12817, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490310

RESUMO

The introduction of the concept of topology into condensed matter physics has greatly deepened our fundamental understanding of transport properties of electrons as well as all other forms of quasi particles in solid materials. It has also fostered a paradigm shift from conventional electronic/optoelectronic devices to novel quantum devices based on topology-enabled quantum device functionalities that transfer energy and information with unprecedented precision, robustness, and efficiency. In this article, the recent research progress in topological quantum devices is reviewed. We first outline the topological spintronic devices underlined by the spin-momentum locking property of topology. We then highlight the topological electronic devices based on quantized electron and dissipationless spin conductivity protected by topology. Finally, we discuss quantum optoelectronic devices with topology-redefined photoexcitation and emission. The field of topological quantum devices is only in its infancy, we envision many significant advances in the near future.

16.
ACS Nano ; 17(8): 7604-7610, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017311

RESUMO

Interplay of crystal symmetry, strong spin-orbit coupling (SOC), and many-body interactions in low-dimensional materials provides a fertile ground for the discovery of unconventional electronic and magnetic properties and versatile functionalities. Two-dimensional (2D) allotropes of group 15 elements are appealing due to their structures and controllability over symmetries and topology under strong SOC. Here, we report the heteroepitaxial growth of a proximity-induced superconducting 2D square-lattice bismuth monolayer on superconducting Pb films. The square lattice of monolayer bismuth films in a C4 symmetry together with a stripey moiré structure is clearly resolved by our scanning tunneling microscopy, and its atomic structure is revealed by density functional theory (DFT) calculations. A Rashba-type spin-split Dirac band is predicted by DFT calculations to exist at the Fermi level and becomes superconducting through the proximity effect from the Pb substrate. We suggest the possibility of a topological superconducting state in this system with magnetic dopants/field. This work introduces an intriguing material platform with 2D Dirac bands, strong SOC, topological superconductivity, and the moiré superstructure.

17.
Opt Lett ; 35(4): 508-10, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20160800

RESUMO

Single-point imagery of 2D objects is proposed by exploiting the extreme broadband nature of an ultrafast terahertz wave. In the proposed imagery, a collimated terahertz beam is illuminated on an object, and the scattered fields are measured through a hole at the Fourier plane in a conventional terahertz time-domain spectroscope. This arrangement allows conversion of radial spatial frequencies of the object to the temporal spectrum of the pulse. Hence, a 2D image can be readily obtained by rotating a hole around the optical axis. Experimental results confirm that a complicated object can be reliably imaged using only 30 waveform measurements.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fenômenos Ópticos , Radiação , Fatores de Tempo
18.
Nanoscale ; 12(27): 14661-14667, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32614026

RESUMO

The Su-Schrieffer-Heeger (SSH) model is a prototypical one-dimensional (1D) diatomic lattice model for non-trivial topological phases and topological excitations. Theoretically, many variations and extensions of the SSH model have been proposed and explored to better understand the novel aspects of topological physics in low dimensions on the nanoscale. However, the outstanding challenge remains to find real nanomaterials with robust structural stability for realizing the 1D topological states. Here, we develop an extended version of the SSH model with multi-atomic bases of four, six and eight atoms and an imposed screw rotation symmetry. Furthermore, based on first-principles calculations, we demonstrate the realization of this model in transition metal monochalcogenide M6X6 (M = Mo and W; X = S, Se and Te) nanowires. The topological features of the doped M6X6 nanowires are confirmed with non-trivial edge modes and e/2 fractional charges, representative of the 1D non-trivial Zak phase. Our finding not only sheds new light on our fundamental understanding of 1D topological physics, but also significantly extends the scope of 1D topological materials that will attract immediate experimental interest, since isolated M6X6 nanowires have already been synthesized in experiments.

19.
Opt Lett ; 34(24): 3863-5, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016639

RESUMO

We demonstrate pulse-echo mode terahertz (THz) reflectance tomography, where scattered THz waveforms are measured using a high-resolution asynchronous-optical-sampling THz time domain spectroscopy (AOS THz-TDS) technique, and 3-D tomographic reconstruction is accomplished using a compressed sensing approach. One of the main advantages of the proposed system is a significant reduction of acquisition time without sacrificing the reconstruction quality, thanks to the sufficient incoherency in the pulse-echo mode-sensing matrix and the fast sampling scheme in AOS THz-TDS.


Assuntos
Compressão de Dados , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imagem Terahertz/instrumentação , Tomografia de Coerência Óptica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Terahertz/métodos , Tomografia de Coerência Óptica/métodos
20.
Nanoscale ; 11(15): 7256-7262, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30931465

RESUMO

A symmetry-protected 2D Dirac semimetal has attracted intense interest for its intriguing material properties. Here, we report a 2D nonsymmorphic Dirac semimetal state in a chemically modified group-VA 2D puckered structure. Based on first-principles calculations, we demonstrate the existence of 2D Dirac fermions in a one-side modified phosphorene structure in two different types: one with a Dirac nodal line (DNL) structure for light elements with negligible spin-orbit coupling (SOC) and the other having an hourglass band protected by a nonsymmorphic symmetry for heavy elements with strong SOC. In the absence of SOC, the DNL exhibits an anisotropic behavior and unique electronic properties, such as constant density of states. The Dirac node is protected from gap opening by the nonsymmorphic space group symmetry. In the presence of SOC, the DNL states split and form an hourglass-shaped dispersion due to the broken inversion symmetry and the Rashba SOC interaction. Moreover, around certain high symmetry points in the Brillouin zone, the spin orientation is enforced to be along a specific direction. We construct an effective tight-binding model to characterize the 2D nonsymmorphic Dirac states. Our result provides a promising material platform for exploring the intriguing properties of essential nodal-line and nodal-point fermions in 2D systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA