Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(36): 17786-17791, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371498

RESUMO

Antibodies are indispensable tools in protein engineering and structural biology. Antibodies suitable for structural studies should recognize the 3-dimensional (3D) conformations of target proteins. Generating such antibodies and characterizing their complexes with antigens take a significant amount of time and effort. Here, we show that we can expand the application of well-characterized antibodies by "transplanting" the epitopes that they recognize to proteins with completely different structures and sequences. Previously, several antibodies have been shown to recognize the alpha-helical conformation of antigenic peptides. We demonstrate that these antibodies can be made to bind to a variety of unrelated "off-target" proteins by modifying amino acids in the preexisting alpha helices of such proteins. Using X-ray crystallography, we determined the structures of the engineered protein-antibody complexes. All of the antibodies bound to the epitope-transplanted proteins, forming accurately predictable structures. Furthermore, we showed that binding of these antihelix antibodies to the engineered target proteins can modulate their catalytic activities by trapping them in selected functional states. Our method is simple and efficient, and it will have applications in protein X-ray crystallography, electron microscopy, and nanotechnology.


Assuntos
Epitopos/química , Proteínas/química , Anticorpos de Cadeia Única/química , Cristalografia por Raios X , Humanos , Conformação Proteica em alfa-Hélice
2.
Drug Dev Res ; 83(3): 783-799, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040501

RESUMO

m6 A RNA methyltransferase (METTL3-14) catalyzes the methylation of adenosine in mRNA and plays important roles in mRNA functions, and it has been implicated in the progression of multiple cancers, including acute myeloid leukemia (AML). In this study, we describe the discovery of the first allosteric inhibitor of the METTL3-14 complex based on structure-activity relationship (SAR) and optimization studies of the hit compound, 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Compound 43n was optimized throughout the modifications of 4 different regions of the structure, and it displayed potent enzyme inhibitory activity of the METTL3-14 complex (IC50  = 2.81 µM) and an antiproliferative effect in the AML cell lines by suppressing the m6 A level of mRNA. The inhibition mechanism and binding mode of 43n were based on the interaction of the reversible and noncompetitive inhibitory profile at the allosteric site along with selectivity for the METTL3-14 complex relative to each subunit enzyme or truncated complex enzyme.


Assuntos
Inibidores Enzimáticos , Leucemia Mieloide Aguda , Metiltransferases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/química , RNA/metabolismo , RNA Mensageiro/metabolismo
3.
J Struct Biol ; 213(1): 107700, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545350

RESUMO

In fungi the ß-class of carbonic anhydrases (ß-CAs) are zinc metalloenzymes that are essential for growth, survival, differentiation, and virulence. Aspergillus fumigatus is the most important pathogen responsible for invasive aspergillosis and possesses two major ß-CAs, CafA and CafB. Recently we reported the biochemical characterization and 1.8 Å crystal structure of CafA. Here, we report a crystallographic analysis of CafB revealing the mechanism of enzyme catalysis and establish the relationship of this enzyme to other ß-CAs. While CafA has a typical open conformation, CafB, when exposed to acidic pH and/or an oxidative environment, has a novel type of active site in which a disulfide bond is formed between two zinc-ligating cysteines, expelling the zinc ion and stabilizing the inactive form of the enzyme. Based on the structural data, we generated an oxidation-resistant mutant (Y159A) of CafB. The crystal structure of the mutant under reducing conditions retains a catalytic zinc at the expected position, tetrahedrally coordinated by three residues (C57, H113 and C116) and an aspartic acid (D59), and replacing the zinc-bound water molecule in the closed form. Furthermore, the active site of CafB crystals grown under zinc-limiting conditions has a novel conformation in which the solvent-exposed catalytic cysteine (C116) is flipped out of the metal coordination sphere, facilitating release of the zinc ion. Taken together, our results suggest that A. fumigatus use sophisticated activity-inhibiting strategies to enhance its survival during infection.


Assuntos
Aspergillus fumigatus/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Catálise , Domínio Catalítico/fisiologia , Cristalografia por Raios X/métodos , Cinética , Zinco/metabolismo
4.
J Struct Biol ; 208(1): 61-68, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376470

RESUMO

The ß-carbonic anhydrases (ß-CAs) are widely distributed zinc-metalloenzymes that play essential roles in growth, survival, development and virulence in fungi. The majority of filamentous ascomycetes possess multiple ß-CA isoforms among which major and minor forms have been characterized. We examined the catalytic behavior of the two minor ß-CAs, CafC and CafD, of Aspergillus fumigatus, and found that both enzymes exhibited low CO2 hydration activities. To understand the structural basis of their low activities, we performed X-ray crystallographic and site-directed mutagenesis studies. Both enzymes exist as homodimers. Like other Type-I ß-CAs, the CafC active site has an "open" conformation in which the zinc ion is tetrahedrally coordinated by three residues (C36, H88 and C91) and a water molecule. However, L25 and L78 on the rim of the catalytic entry site protrude into the active site cleft, partially occluding access to it. Single (L25G or L78G) and double mutants provided evidence that widening the entrance to the active site greatly accelerates catalytic activity. By contrast, CafD has a typical Type-II "closed" conformation in which the zinc-bound water molecule is replaced by aspartic acid (D36). The most likely explanation for this result is that an arginine that is largely conserved within the ß-CA family is replaced by glycine (G38), so that D36 cannot undergo a conformational change by forming a D-R pair that creates the space for a zinc-bound water molecule and switches the enzyme to the active form. The CafD structure also reveals the presence of a "non-catalytic" zinc ion in the dimer interface, which may contribute to stabilizing the dimeric assembly.


Assuntos
Aspergillus fumigatus/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Catálise , Domínio Catalítico , Ligação Proteica , Zinco/metabolismo
5.
Biochem Biophys Res Commun ; 503(4): 2899-2905, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126635

RESUMO

Glial fibrillary acidic protein (GFAP) is a homopolymeric type III intermediate filament (IF) that plays essential roles in cell migration, mitosis, development, and signaling in astrocytes and a specific type of glial cells. Its overexpression and genetic mutations lead to abnormal IF networks and accumulation of Rosenthal fibers, which results in the fatal neurodegenerative disorder Alexander disease. Herein, we present the first crystal structure of human GFAP spanning the central coiled-coil 1B domain at 2.5 Šresolution. The domain forms a tetramer comprising two equivalent parallel coiled-coil dimers that pack together in an antiparallel manner. Its assembly is stabilized by extensive networks of intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions. Furthermore, mapping of the GFAP mutations associated with Alexander disease reveals that most involve residues buried in the core of the interface, and are likely to disrupt the intermolecular interactions and/or introduce steric clashes, thereby decreasing GFAP solubility and promoting aggregation. Based on our structural analysis and previous biochemical studies, we propose that GFAP assembles in the A11 mode in which coiled-coil 1B dimers lie in close axial proximity in an antiparallel fashion to provide a stable tetrameric platform for the organization of the GFAP filament.


Assuntos
Proteína Glial Fibrilar Ácida/química , Doença de Alexander/genética , Cristalografia por Raios X , Humanos , Filamentos Intermediários/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
6.
Biochem Biophys Res Commun ; 495(1): 1201-1207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180014

RESUMO

Prompt removal of misfolded membrane proteins and misassembled membrane protein complexes is essential for membrane homeostasis. However, the elimination of these toxic proteins from the hydrophobic membrane environment has high energetic barriers. The transmembrane protein, FtsH, is the only known ATP-dependent protease responsible for this task. The mechanisms by which FtsH recognizes, unfolds, translocates, and proteolyzes its substrates remain unclear. The structure and function of the ATPase and protease domains of FtsH have been previously characterized while the role of the FtsH periplasmic domain has not clearly identified. Here, we report the 1.5-1.95 Å resolution crystal structures of the Thermotoga maritima FtsH periplasmic domain (tmPD) and describe the dynamic features of tmPD oligomerization.


Assuntos
Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/ultraestrutura , Peptídeo Hidrolases/química , Peptídeo Hidrolases/ultraestrutura , Multimerização Proteica , Thermotoga maritima/enzimologia , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
7.
Immunity ; 31(6): 873-84, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19931471

RESUMO

Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.


Assuntos
Lipopeptídeos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia , Acilação , Animais , Sítios de Ligação , Cristalografia por Raios X , Feiticeiras (Peixe) , Humanos , Ligantes , Lipopeptídeos/química , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Camundongos , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/imunologia , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Ácidos Teicoicos/química , Ácidos Teicoicos/imunologia , Ácidos Teicoicos/metabolismo , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/química , Receptor 6 Toll-Like/química
8.
Nature ; 490(7421): 566-9, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23000902

RESUMO

P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades. Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane's inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis, but also helps to explain perplexing functional data regarding the Phe335Ala mutant. These results increase our understanding of the structure and function of this important molecule.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Caenorhabditis elegans/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Dactinomicina/metabolismo , Humanos , Hidrólise , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Paclitaxel/metabolismo , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
9.
Biochem Biophys Res Commun ; 486(2): 470-475, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28315686

RESUMO

Anti-bacterial and anti-viral neuraminidase agents inhibit neuraminidase activity catalyzing the hydrolysis of terminal N-acetylneuraminic acid (Neu5Ac) from glycoconjugates and help to prevent the host pathogenesis that lead to fatal infectious diseases including influenza, bacteremia, sepsis, and cholera. Emerging antibiotic and drug resistances to commonly used anti-neuraminidase agents such as oseltamivir (Tamiflu) and zanamivir (Relenza) have highlighted the need to develop new anti-neuraminidase drugs. We obtained a serendipitous complex crystal of the catalytic domain of Clostridium perfringens neuraminidase (CpNanICD) with 2-(cyclohexylamino)ethanesulfonic acid (CHES) as a buffer. Here, we report the crystal structure of CpNanICD in complex with CHES at 1.24 Å resolution. Amphipathic CHES binds to the catalytic site of CpNanICD similar to the substrate (Neu5Ac) binding site. The 2-aminoethanesulfonic acid moiety and cyclohexyl groups of CHES interact with the cluster of three arginine residues and with the hydrophobic pocket of the CpNanICD catalytic site. In addition, a structural comparison with other bacterial and human neuraminidases suggests that CHES could serve as a scaffold for the development of new anti-neuraminidase agents targeting CpNanI.


Assuntos
Proteínas de Bactérias/química , Clostridium perfringens/química , Inibidores Enzimáticos/química , Neuraminidase/química , Taurina/análogos & derivados , Motivos de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Clostridium perfringens/enzimologia , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Neuraminidase/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Taurina/química
10.
Immunity ; 29(2): 182-91, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18701082

RESUMO

Toll-like receptors (TLRs) play central roles in the innate immune response by recognizing conserved structural patterns in diverse microbial molecules. Here, we discuss ligand binding and activation mechanisms of the TLR family. Hydrophobic ligands of TLR1, TLR2, and TLR4 interact with internal protein pockets. In contrast, dsRNA, a hydrophilic ligand, interacts with the solvent-exposed surface of TLR3. Binding of agonistic ligands, lipopeptides or dsRNA, induces dimerization of the ectodomains of the various TLRs, forming dimers that are strikingly similar in shape. In these "m"-shaped complexes, the C termini of the extracellular domains of the TLRs converge in the middle. This observation suggests the hypothesis that dimerization of the extracellular domains forces the intracellular TIR domains to dimerize, and this initiates signaling by recruiting intracellular adaptor proteins.


Assuntos
Antígeno 96 de Linfócito/metabolismo , Estrutura Terciária de Proteína , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animais , Sítios de Ligação , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/imunologia , Receptores de Interleucina-1/metabolismo
11.
Commun Biol ; 7(1): 672, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822018

RESUMO

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Humanos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Sítios de Ligação , Cádmio/metabolismo , Cádmio/química , Microscopia Crioeletrônica , Glutationa/metabolismo , Glutationa/química , Modelos Moleculares , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Ligação Proteica , Conformação Proteica
12.
Eur J Med Chem ; 260: 115720, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633203

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been targeted for the development of anti-SARS-CoV-2 agents against COVID-19 infection because Mpro processes essential viral polyproteins and plays a key role in SARS-CoV-2 replication. In this study, we report the development of novel SARS-CoV-2 Mpro inhibitors derived from carmofur, a previously identified compound that has shown moderate potency as a covalent inhibitor of SARS-CoV-2 Mpro. To employ a structure-guided drug design strategy, a putative intact binding mode of carmofur at catalytic active site of Mpro was initially predicted by docking simulation. Based on the predicted binding mode, a series of carmofur derivatives aiming to occupy the Mpro substrate binding regions were investigated for structure-activity relationship analysis. As a result, an indole-based derivative, speculated to interact with the S4 binding pocket, 21b (IC50 = 1.5 ± 0.1 µM) was discovered. Its structure was further modified and evaluated in silico by combining docking simulation, free energy perturbation calculation and subpocket interaction analysis to optimize the interactions at the S2 and S4 binding pockets. Among the newly designed novel derivatives, 21h and 21i showed the best inhibitory potencies against Mpro with IC50 values of 0.35 and 0.37 µM, respectively. Moreover, their antiviral activities were confirmed with EC50 values of 20-30 µM in the SARS-CoV-2-infected cell-based assay, suggesting that these novel Mpro inhibitors could be applied as potential lead compounds for the development of substantial anti-SARS-CoV-2 agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Fluoruracila
13.
Commun Biol ; 6(1): 960, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735522

RESUMO

Human ATP-binding cassette transporter subfamily B6 (ABCB6) is a mitochondrial ATP-driven pump that translocates porphyrins from the cytoplasm into mitochondria for heme biosynthesis. Within the transport pathway, a conserved aromatic residue W546 located in each monomer plays a pivotal role in stabilizing the occluded conformation via π-stacking interactions. Herein, we employed cryo-electron microscopy to investigate the structural consequences of a single W546A mutation in ABCB6, both in detergent micelles and nanodiscs. The results demonstrate that the W546A mutation alters the conformational dynamics of detergent-purified ABCB6, leading to entrapment of the transporter in an outward-facing transient state. However, in the nanodisc system, we observed a direct interaction between the transporter and a phospholipid molecule that compensates for the absence of the W546 residue, thereby facilitating the normal conformational transition of the transporter toward the occluded state following ATP hydrolysis. The findings also reveal that adoption of the outward-facing conformation causes charge repulsion between ABCB6 and the bound substrate, and rearrangement of key interacting residues at the substrate-binding site. Consequently, the affinity for the substrate is significantly reduced, facilitating its release from the transporter.


Assuntos
Detergentes , Porfirinas , Humanos , Microscopia Crioeletrônica , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Membrana Transportadoras , Trifosfato de Adenosina
14.
iScience ; 26(12): 108386, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025788

RESUMO

The endoplasmic reticulum (ER) consists of the nuclear envelope and a connected peripheral network of tubules and interspersed sheets. The structure of ER tubules is generated and maintained by various proteins, including reticulons, DP1/Yop1p, atlastins, and lunapark. Reticulons and DP1/Yop1p stabilize the high membrane curvature of ER tubules, and atlastins mediate homotypic membrane fusion between ER tubules; however, the exact role of lunapark remains poorly characterized. Here, using isolated yeast ER microsomes and reconstituted proteoliposomes, we directly examined the function of the yeast lunapark Lnp1p for yeast atlastin Sey1p-mediated ER fusion and found that Lnp1p inhibits Sey1p-driven membrane fusion. Furthermore, by using a newly developed assay for monitoring trans-Sey1p complex assembly, a prerequisite for ER fusion, we found that assembly of trans-Sey1p complexes was increased by the deletion of LNP1 and decreased by the overexpression of Lnp1p, indicating that Lnp1p inhibits Sey1p-mediated fusion by interfering with assembly of trans-Sey1p complexes.

15.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35455436

RESUMO

N6A-methyladenosine (m6A) post-transcriptional modification, the most abundant internal RNA modification, is catalyzed by the METTL3-14 methyltransferase complex. Recently, attention has been drawn to the METTL3-14 complex regarding its significant roles in the pathogenesis of acute myeloid leukemia (AML), attracting the potential of novel therapeutic targets for the disease. Herein, we report the identification and characterization of eltrombopag as a selective allosteric inhibitor of the METTL3-14 complex. Eltrombopag exhibited selective inhibitory activity in the most active catalytic form of the METTL3-14 complex by direct binding, and the mechanism of inhibition was confirmed as a noncompetitive inhibition by interacting at a putative allosteric binding site in METTL3, which was predicted by cavity search and molecular docking studies. At a cellular level, eltrombopag displayed anti-proliferative effects in the relevant AML cell line, MOLM-13, in correlation with a reduction in m6A levels. Molecular mechanism studies of eltrombopag using m6A-seq analysis provided further evidence of its cellular function by determining the hypomethylation of leukemogenic genes in eltrombopag-treated MOLM-13 cells and the overlapping of the pattern with those of METTL3-knockdown MOLM-13 cells. In conclusion, eltrombopag was first disclosed as a functional METTL3-14 allosteric inhibitor in AML cells, which could be utilized for the further development of novel anti-AML therapy.

16.
Nat Commun ; 13(1): 5851, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195619

RESUMO

TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.


Assuntos
Peptídeos , Fosfatidilserinas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Lisossomos/metabolismo , Camundongos , Peptídeos/química , Fosfatidilserinas/metabolismo
17.
Eur J Hum Genet ; 30(6): 687-694, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35246666

RESUMO

Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia. DNA sequencing revealed a novel 33-bp in-frame deletion mutation (p.Glu138_Leu148del) within the 1B rod domain of GFAP, which was predicted to be deleterious by PROVEAN analysis. To test whether the deletion mutant is disease-causing, we performed in vitro GFAP assembly and sedimentation assays, and GFAP aggregation assays in human adrenal carcinoma SW13 (Vim-) cells and rat primary astrocytes. All the assays revealed that GFAP p.Glu138_Leu148del is aggregation prone. Based on these findings, we diagnosed the patient with Type II AxD. This is a report that demonstrates the pathogenicity of InDel mutation of GFAP through functional studies. This patient's atypical presentation as well as the discrepancy between clinical symptoms and radiologic findings may extend the scope of AxD.


Assuntos
Doença de Alexander , Doença de Alexander/diagnóstico , Doença de Alexander/genética , Doença de Alexander/patologia , Animais , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/genética , Humanos , Mutação , Fenótipo , Ratos
18.
Mol Cells ; 45(8): 575-587, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950458

RESUMO

Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metalfree porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.


Assuntos
Porfirinas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Glutationa/metabolismo , Hemina/metabolismo , Humanos , Porfirinas/metabolismo
19.
Curr Opin Immunol ; 20(4): 414-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18585456

RESUMO

Toll-like receptors (TLRs) play central roles in the innate immune response by recognizing conserved structural patterns in diverse microbial molecules. The structures of the extracellular domains of four TLRs and their complexes with ligands have recently been determined by high-resolution X-ray crystallography. In this review, we describe these structures and discuss proposed activation mechanisms. TLRs deviate substantially from the canonical LRR structure and interact with a large variety of ligands in a highly divergent fashion. Agonistic ligands induce the formation of 'm' shaped TLR dimers in which the C-termini of the extracellular domains converge in the middle. This structural rearrangement of the extracellular domains suggests an activation mechanism that may be common to all TLR family proteins.


Assuntos
Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animais , Dimerização , Humanos , Ligantes , Lipopeptídeos/imunologia , Lipopeptídeos/metabolismo , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Antígeno 96 de Linfócito/metabolismo , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia
20.
Mol Cells ; 43(9): 831-840, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32975213

RESUMO

The ß-class of carbonic anhydrases (ß-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the ß-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible ″open″ conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.


Assuntos
Anidrases Carbônicas/metabolismo , Aspergillus fumigatus , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA