Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(9): e2300668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325804

RESUMO

Flexible pressure sensors have drawn considerable attention for their potential applications as electronic skins with both sensitivity and pressure response range. Although the introduction of surface microstructures effectively enhances sensitivity, the confined volume of their compressible structures results in a limited pressure response range. To address this issue, a biomimetic kapok structure is proposed and implemented for constructing the dielectric layer of flexible capacitive pressure sensors employing 3D printing technology. The structure is designed with easily deformable concave and rotational structures, enabling continuous deformation under pressure. This design results in a significant expansion of the pressure response range and improvement in sensitivity. Further, the study purposively analyses crucial parameters of the devised structure that affect its compressibility and stability. These include the concave angle θ, height ratio d1/d2, rotation angle α, and width k. As a result, the ultimate pressure sensors demonstrate remarkable features such as high sensitivity (≈2.38 kPa-1 in the range of 0-10 kPa), broad detection range (734 kPa), fast response time (23 ms), and outstanding pressure resolution (0.4% at 500 kPa). This study confirms the viability of bionic structures for flexible sensors, and their potential to expand the scope of wearable electronic devices.


Assuntos
Pressão , Impressão Tridimensional , Dispositivos Eletrônicos Vestíveis , Capacitância Elétrica
2.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447984

RESUMO

In this paper, a multi-focus image fusion algorithm via the distance-weighted regional energy and structure tensor in non-subsampled contourlet transform domain is introduced. The distance-weighted regional energy-based fusion rule was used to deal with low-frequency components, and the structure tensor-based fusion rule was used to process high-frequency components; fused sub-bands were integrated with the inverse non-subsampled contourlet transform, and a fused multi-focus image was generated. We conducted a series of simulations and experiments on the multi-focus image public dataset Lytro; the experimental results of 20 sets of data show that our algorithm has significant advantages compared to advanced algorithms and that it can produce clearer and more informative multi-focus fusion images.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Fenômenos Físicos , Processamento de Imagem Assistida por Computador/métodos
3.
Int J Biol Macromol ; 242(Pt 1): 124728, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150372

RESUMO

Polylactic acid (PLA) has been extensively used as a bone scaffold material, but it still faces many problems including low biomineralization ability, weak cell response, low mechanical properties, etc. In this study, we proposed to utilize the distinctive physical, chemical and biological properties of a natural biomineral with organic matrix, pearl powder, to enhance the overall performance of PLA bone scaffolds. Porous PLA/pearl composite bone scaffolds were prepared using fused deposition modeling (FDM) 3D printing technology, and their comprehensive performance was investigated. Macro- and micro- morphological observation by the optical camera and scanning electron microscopy (SEM) showed the 3D printed scaffolds have interconnected and ordered periodic porous structures. Phase analysis by X-ray diffraction (XRD) indicated pearl powder was well composited with PLA without impurity formation during the melt extrusion process. The mechanical test results indicated the tensile and compressive strength of PLA/pearl composite scaffolds with 10 % pearl powder content yielded the highest values, which were 15.5 % and 21.8% greater than pure PLA, respectively. The water contact angle and water absorption tests indicated that PLA/pearl showed better hydrophilicity than PLA due to the presence of polar groups in the organic matrix of the pearl powder. The results of the simulated body fluid (SBF) soaking revealed that the addition of pearl powder effectively enhanced the formation and deposition of apatite, which was attributed to the release of Ca2+ from the dissolution of pearl powder. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that PLA/pearl scaffolds showed better cell proliferation and osteogenic differentiation than PLA due to the stimulation of the biological organic matrix in pearl powder. These outcomes signify the potential of pearl powder as a natural biomineral containing bio-signal factors to improve the mechanical and biological properties of polymers for better bone tissue engineering application.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Osteogênese , Biomineralização , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA