Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Development ; 148(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33268452

RESUMO

PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 (PECT1) regulates phosphatidylethanolamine biosynthesis and controls the phosphatidylethanolamine:phosphatidylcholine ratio in Arabidopsis thaliana Previous studies have suggested that PECT1 regulates flowering time by modulating the interaction between phosphatidylcholine and FLOWERING LOCUS T (FT), a florigen, in the shoot apical meristem (SAM). Here, we show that knockdown of PECT1 by artificial microRNA in the SAM (pFD::amiR-PECT1) accelerated flowering under inductive and even non-inductive conditions, in which FT transcription is almost absent, and in ft-10 twin sister of ft-1 double mutants under both conditions. Transcriptome analyses suggested that PECT1 affects flowering by regulating SHORT VEGETATIVE PHASE (SVP) and GIBBERELLIN 20 OXIDASE 2 (GA20ox2). SVP misexpression in the SAM suppressed the early flowering of pFD::amiR-PECT1 plants. pFD::amiR-PECT1 plants showed increased gibberellin (GA) levels in the SAM, concomitant with the reduction of REPRESSOR OF GA1-3 levels. Consistent with this, GA treatment had little effect on flowering time of pFD::amiR-PECT1 plants and the GA antagonist paclobutrazol strongly affected flowering in these plants. Together, these results suggest that PECT1 also regulates flowering time through a florigen-independent pathway, modulating SVP expression and thus regulating GA production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Florígeno/metabolismo , Flores/fisiologia , Nucleotidiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Meristema/metabolismo , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
2.
Semin Cell Dev Biol ; 109: 20-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507412

RESUMO

Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/metabolismo
3.
New Phytol ; 230(3): 938-942, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33474759

RESUMO

Plants display remarkable developmental flexibility as they continuously sense and respond to changes in their environment. This flexibility allows them to select the optimal timing for critical developmental decisions such as when to flower. Ambient temperature is a major environmental factor that influences flowering; the mechanisms involved in ambient temperature-responsive flowering have attracted particular attention as a consequence of the effects of global climate change on temperature. PHYTOCHROME INTERACTING FACTOR 4 and alternative splicing of FLOWERING LOCUS M affect temperature-responsive flowering; however, the exact temperature-sensing mechanism in plants remains elusive. Further study of these molecular mechanisms will contribute to our understanding of how plants sense ambient temperature and respond via diverse biological signaling cascades.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura , Fatores de Transcrição/metabolismo
4.
J Exp Bot ; 72(20): 7049-7066, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34270724

RESUMO

The nonsense-mediated mRNA decay (NMD) surveillance system clears aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. Although loss of the core NMD proteins UP-FRAMESHIFT1 (UPF1) and UPF3 leads to late flowering in Arabidopsis, the underlying mechanism remains elusive. Here, we showed that mutations in UPF1 and UPF3 cause temperature- and photoperiod-independent late flowering. Expression analyses revealed high FLOWERING LOCUS C (FLC) mRNA levels in upf mutants; in agreement with this, the flc mutation strongly suppressed the late flowering of upf mutants. Vernalization accelerated flowering of upf mutants in a temperature-independent manner. FLC transcript levels rose in wild-type plants upon NMD inhibition. In upf mutants, we observed increased enrichment of H3K4me3 and reduced enrichment of H3K27me3 in FLC chromatin. Transcriptome analyses showed that SET DOMAIN GROUP 40 (SDG40) mRNA levels increased in upf mutants, and the SDG40 transcript underwent NMD-coupled alternative splicing, suggesting that SDG40 affects flowering time in upf mutants. Furthermore, NMD directly regulated SDG40 transcript stability. The sdg40 mutants showed decreased H3K4me3 and increased H3K27me3 levels in FLC chromatin, flowered early, and rescued the late flowering of upf mutants. Taken together, these results suggest that NMD epigenetically regulates FLC through SDG40 to modulate flowering time in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Degradação do RNAm Mediada por Códon sem Sentido , Domínios PR-SET , RNA Helicases/genética
5.
Plant J ; 99(3): 452-464, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30943325

RESUMO

During the transition to the reproductive phase, the shoot apical meristem switches from the developmental program that generates vegetative organs to instead produce flowers. In this study, we examined the genetic interactions of FLOWERING LOCUS T (FT)/TWIN SISTER OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) in the determination of inflorescence meristem identity in Arabidopsis thaliana. The ft-10 tsf-1 mutants produced a compact inflorescence surrounded by serrated leaves (hyper-vegetative shoot) at the early bolting stage, as did plants overexpressing TFL1. Plants overexpressing FT or TSF (or both FT and TFL1) generated a terminal flower, as did tfl1-20 mutants. The terminal flower formed in tfl1-20 mutants converted to a hyper-vegetative shoot in ft-10 tsf-1 mutants. Grafting ft-10 tsf-1 or ft-10 tsf-1 tfl1-20 mutant scions to 35S::FT rootstock plants produced a normal inflorescence and a terminal flower in the scion plants, respectively, although both scions showed similar early flowering. Misexpression of FT in the vasculature and in the shoot apex in wild-type plants generated a normal inflorescence and a terminal flower, respectively. By contrast, in ft-10 tsf-1 mutants the vasculature-specific misexpression of FT converted the hyper-vegetative shoot to a normal inflorescence, and in the ft-10 tsf-1 tfl1-20 mutants converted the shoot to a terminal flower. TFL1 levels did not affect the inflorescence morphology caused by FT/TSF overexpression at the early bolting stage. Taking these results together, we proposed that FT/TSF and TFL1 play antagonistic roles in the determination of inflorescence meristem identity, and that FT/TSF are more important than TFL1 in this process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Inflorescência/genética , Meristema/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Epistasia Genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
6.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121126

RESUMO

Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Degradação do RNAm Mediada por Códon sem Sentido , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/microbiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Imunidade Vegetal , RNA Helicases/genética , Análise de Sequência de RNA
7.
Biochem Biophys Res Commun ; 484(4): 839-844, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28161630

RESUMO

Internal and environmental cues, including ambient temperature changes, regulate the timing of flowering in plants. Arabidopsis miR156 represses flowering and plays an important role in the regulation of temperature-responsive flowering. However, the molecular basis of miR156 processing at lower temperatures remains largely unknown. Here, we performed nuclear magnetic resonance studies to investigate the base-pair opening dynamics of model RNAs at 16 °C and investigated the in vivo effects of the mutant RNAs on temperature-responsive flowering. The A9C and A10CG mutations in the B5 bulge of the lower stem of pri-miR156a stabilized the C15∙G98 and U16∙A97 base-pairs at the cleavage site of pri-miR156a at 16 °C. Consistent with this, production of mature miR156 was severely affected in plants overexpressing the A9C and A10CG constructs and these plants exhibited almost no delay in flowering at 16 °C. The A10G and A9AC mutations did not strongly affect C15∙G98 and U16∙A97 base-pairs at 16 °C, and plants overexpressing A10G and A9AC mutants of miR156 produced more mature miR156 than plants overexpressing the A9C and A10CG mutants and showed a strong delay in flowering at 16 °C. Interestingly, the A9AC mutation had distinct effects on the opening dynamics of the C15∙G98 and U16∙A97 base-pairs between 16 °C and 23 °C, and plants expressing the A9AC mutant miR156 showed only a moderate delay in flowering at 16 °C. Based on these results, we propose that fine-tuning of the base-pair stability at the cleavage site is essential for efficient processing of pri-miR156a at a low temperature and for reduced flowering sensitivity to ambient temperature changes.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Pareamento Incorreto de Bases/genética , Pareamento de Bases/genética , Flores/genética , MicroRNAs/genética , Sensação Térmica/genética , Sequência de Bases , Dados de Sequência Molecular , Mutação , Temperatura
8.
J Exp Bot ; 67(15): 4659-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27335452

RESUMO

MicroRNAs originate from primary transcripts (pri-miRNAs) containing hairpin structures. Plant pri-miRNAs have highly variable structures and little is known about the information encoded in their secondary structures. Arabidopsis miR156 is an ambient temperature-responsive miRNA and plays an important role in regulating flowering time. To identify the structural determinants for miR156 processing, we analyzed the effects of mutations introduced in the upper stem of pri-miR156a on its temperature-dependent processing and flowering time. The levels of pri-miR156a and mature miR156 were opposite at different temperatures. Mutations in the upper stem, especially the region closer to the miR156a/miR156a* duplex, reduced miR156 processing at 23 °C and 16 °C and caused a less severe phenotype compared with the un-mutated construct. Mutation in the second stem near the first cleavage site of pri-miR156a affected miR156 processing at 23 °C, but not at 16 °C. This was also seen in pri-miR172a, another ambient temperature-responsive miRNA. Replacement of the upper stem of pri-miR156a with that of pri-miR172a severely affected miR156 processing and flowering time. These results suggested that the upper stem of pri-miR156a is important for miR156 processing at different temperatures. In particular, the second stem adjacent to the first cleavage site plays a role in the regulation of ambient temperature-responsive flowering.


Assuntos
Arabidopsis/metabolismo , Flores/metabolismo , MicroRNAs/metabolismo , Northern Blotting , Conformação de Ácido Nucleico , Caules de Planta/metabolismo , Reação em Cadeia da Polimerase , Temperatura
9.
J Exp Bot ; 66(20): 6109-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26139827

RESUMO

In plants, successful reproduction requires the proper timing of flowering under changing environmental conditions. Arabidopsis FLOWERING LOCUS T (FT), which encodes a proposed phloem-mobile florigen, has a close homologue, TWIN SISTER OF FT (TSF). During the vegetative phase, TSF shows high levels of expression in the hypocotyl before FT induction, but the tsf mutation does not have an apparent flowering-time phenotype on its own under long-day conditions. This study compared the protein mobility of FT and TSF. With TSF-overexpressing plants as the rootstock, the flowering time of ft tsf scion plants was only slightly accelerated. Previous work has shown that FT is graft-transmissible; by contrast, this study did not detect movement of TSF from the roots into the shoot of the scion plants. This study used plants overexpressing FT/TSF chimeric proteins to map a region responsible for FT movement. A chimeric TSF with region II of FT (L28 to G98) expressed in the rootstock caused early flowering in ft tsf scion plants; movement of the chimeric protein from the rootstocks into the shoot apical region of the ft tsf scion plants was also detected. Misexpression of TSF in the leaf under the control of the FT promoter or grafting of 35S::TSF cotyledons accelerated flowering of ft-10 plants. FT was more stable than TSF. Taking these results together, we propose that protein mobility of FT is higher than that of TSF, possibly due to a protein domain that confers mobility and/or protein stability.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Reação em Cadeia da Polimerase
10.
J Acoust Soc Am ; 138(5): 2782-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26627754

RESUMO

This study investigated whether native listeners processed speech differently from non-native listeners in a speech detection task. Detection thresholds of Mandarin Chinese and Korean vowels and non-speech sounds in noise, frequency selectivity, and the nativeness of Mandarin Chinese and Korean vowels were measured for Mandarin Chinese- and Korean-native listeners. The two groups of listeners exhibited similar non-speech sound detection and frequency selectivity; however, the Korean listeners had better detection thresholds of Korean vowels than Chinese listeners, while the Chinese listeners performed no better at Chinese vowel detection than the Korean listeners. Moreover, thresholds predicted from an auditory model highly correlated with behavioral thresholds of the two groups of listeners, suggesting that detection of speech sounds not only depended on listeners' frequency selectivity, but also might be affected by their native language experience. Listeners evaluated their native vowels with higher nativeness scores than non-native listeners. Native listeners may have advantages over non-native listeners when processing speech sounds in noise, even without the required phonetic processing; however, such native speech advantages might be offset by Chinese listeners' lower sensitivity to vowel sounds, a characteristic possibly resulting from their sparse vowel system and their greater cognitive and attentional demands for vowel processing.


Assuntos
Limiar Auditivo/fisiologia , Limiar Diferencial/fisiologia , Idioma , Fonética , Percepção da Fala/fisiologia , Adulto , Povo Asiático/psicologia , Atenção , China/etnologia , Cognição , Feminino , Humanos , República da Coreia/etnologia , Razão Sinal-Ruído , Espectrografia do Som , Adulto Jovem
11.
Lang Speech ; 57(Pt 2): 238-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25102608

RESUMO

The goal of this study was to examine durations of American English vowels produced by English-, Chinese-, and Korean-native speakers and the effects of vowel duration on vowel intelligibility. Twelve American English vowels were recorded in the /hVd/ phonetic context by native speakers and non-native speakers. The English vowel duration patterns as a function of vowel produced by non-native speakers were generally similar to those produced by native speakers. These results imply that using duration differences across vowels may be an important strategy for non-native speakers' production before they are able to employ spectral cues to produce and perceive English speech sounds. In the intelligibility experiment, vowels were selected from 10 native and non-native speakers and vowel durations were equalized at 170 ms. Intelligibility of vowels with original and equalized durations was evaluated by American English native listeners. Results suggested that vowel intelligibility of native and non-native speakers degraded slightly by 3-8% when durations were equalized, indicating that vowel duration plays a minor role in vowel intelligibility.


Assuntos
Multilinguismo , Acústica da Fala , Percepção da Fala , Medida da Produção da Fala , Qualidade da Voz , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Inteligibilidade da Fala , Fatores de Tempo , Adulto Jovem
12.
Plant Commun ; 5(4): 100814, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38213026

RESUMO

Ambient temperature affects flowering time in plants, and the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a crucial role in the response to changes in ambient temperature. SVP protein stability is regulated by the 26S proteasome pathway and decreases at high ambient temperature, but the details of SVP degradation are unclear. Here, we show that SVP degradation at high ambient temperature is mediated by the CULLIN3-RING E3 ubiquitin ligase (CRL3) complex in Arabidopsis thaliana. We identified a previously uncharacterized protein that interacts with SVP at high ambient temperature and contains a BTB/POZ domain. We named this protein LATE FLOWERING AT HIGH TEMPERATURE 1 (LFH1). Single mutants of LFH1 or CULLIN3A (CUL3A) showed late flowering specifically at 27°C. LFH1 protein levels increased at high ambient temperature. We found that LFH1 interacts with CUL3A in the cytoplasm and is important for SVP-CUL3A complex formation. Mutations in CUL3A and/or LFH1 led to increased SVP protein stability at high ambient temperature, suggesting that the CUL3-LFH1 complex functions in SVP degradation. Screening E2 ubiquitin-conjugating enzymes (UBCs) using RING-BOX PROTEIN 1 (RBX1), a component of the CRL3 complex, as bait identified UBC15. ubc15 mutants also showed late flowering at high ambient temperature. In vitro and in vivo ubiquitination assays using recombinant CUL3A, LFH1, RBX1, and UBC15 showed that SVP is highly ubiquitinated in an ATP-dependent manner. Collectively, these results indicate that the degradation of SVP at high ambient temperature is mediated by a CRL3 complex comprising CUL3A, LFH1, and UBC15.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligases/metabolismo , Temperatura , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
J Acoust Soc Am ; 133(5): EL363-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23656095

RESUMO

The current study examined Vowel Inherent Spectral Change (VISC) of English vowels spoken by English-, Chinese-, and Korean-native speakers. Two metrics, spectral distance (amount of spectral shift) and spectral angle (direction of spectral shift) of formant movement from the onset to the offset, were measured for 12 English monophthongs produced in a /hvd/ context. While Chinese speakers showed significantly greater spectral distances of vowels than English and Korean speakers, there was no significant speakers' native language effect on spectral angles. Comparisons to their native vowels for Chinese and Korean speakers suggest that VISC might be affected by language-specific phonological structure.


Assuntos
Multilinguismo , Fonética , Acústica da Fala , Qualidade da Voz , Acústica , Adulto , Audiometria de Tons Puros , Limiar Auditivo , Humanos , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Medida da Produção da Fala , Fatores de Tempo , Adulto Jovem
14.
J Acoust Soc Am ; 133(5): EL391-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23656099

RESUMO

The identification of 12 English vowels was measured in quiet and in long-term speech-shaped noise (LTSSN) and multi-talker babble for English-native (EN) listeners and Chinese-native listeners in the U.S. (CNU) and China (CNC). The signal-to-noise ratio was manipulated from -15 to 0 dB. As expected, EN listeners performed significantly better in quiet and noisy conditions than CNU and CNC listeners. Vowel identification in LTSSN was similar between CNU and CNC listeners; however, performance in babble was significantly better for CNU listeners than for CNC listeners, indicating that exposing non-native listeners to native English may reduce informational masking of multi-talker babble.


Assuntos
Ruído/efeitos adversos , Mascaramento Perceptivo , Fonética , Reconhecimento Psicológico , Acústica da Fala , Percepção da Fala , Qualidade da Voz , Estimulação Acústica , Acústica , Adulto , Audiometria de Tons Puros , Audiometria da Fala , Limiar Auditivo , Feminino , Humanos , Masculino , Multilinguismo , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
15.
16.
Plant Commun ; 4(3): 100515, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36597356

RESUMO

The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues. Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation. Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development. Here, we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early, especially under long-day conditions, although low sugar accumulation was seen in some mutants. Plants treated with the bleaching herbicide norflurazon also flowered early, suggesting that chloroplasts have a role in floral repression. Among retrograde signaling mutants, the golden2-like 1 (glk1) glk2 double mutants showed early flowering under long-day conditions. This early flowering was completely suppressed by constans (co) and flowering locus t (ft) mutations. Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants. GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14 (BBX14), BBX15, and BBX16 via CCAATC cis-elements in the BBX genes. BBX14/15/16 physically interact with CO in the nucleus, and expression of BBXs hampered CO-mediated FT transcription. Simultaneous knockdown of BBX14/15/16 by artificial miRNA (35S::amiR-BBX14/15/16) caused early flowering with increased FT transcript levels, whereas BBX overexpression caused late flowering. Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment. Taking these observations together, we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Cloroplastos/metabolismo
17.
J Acoust Soc Am ; 132(5): EL391-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23145700

RESUMO

This study aimed to investigate English sentence recognition in quiet and two types of maskers, multi-talker babble (MTB) and long-term speech-shaped noise (LTSSN), with varied signal-to-noise ratios, for English-, Chinese-, and Korean-native listeners. Results showed that first, sentence recognition for non-native listeners was affected more by background noise than that for native listeners; second, the masking effects of LTSSN were similar between Chinese and Korean listeners, but the masking effects of MTB were greater for Chinese than for Korean listeners, suggesting possible interaction effects between the non-native listener's native language and speech-like competing noise in sentence recognition.


Assuntos
Multilinguismo , Ruído , Mascaramento Perceptivo , Reconhecimento Psicológico , Acústica da Fala , Inteligibilidade da Fala , Percepção da Fala , Estimulação Acústica , Adulto , Audiometria de Tons Puros , Audiometria da Fala , Feminino , Humanos , Masculino , Adulto Jovem
18.
Front Plant Sci ; 13: 817356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222476

RESUMO

RNA polymerase II-associated factor 1 complex (PAF1C) regulates the transition from the vegetative to the reproductive phase primarily by modulating the expression of FLOWERING LOCUS C (FLC) and FLOWERING LOCUS M [FLM, also known as MADS AFFECTING FLOWERING1 (MAF1)] at standard growth temperatures. However, the role of PAF1C in the regulation of flowering time at chilling temperatures (i.e., cold temperatures that are above freezing) and whether PAF1C affects other FLC-clade genes (MAF2-MAF5) remains unknown. Here, we showed that Arabidopsis thaliana mutants of any of the six known genes that encode components of PAF1C [CELL DIVISION CYCLE73/PLANT HOMOLOGOUS TO PARAFIBROMIN, VERNALIZATION INDEPENDENCE2 (VIP2)/EARLY FLOWERING7 (ELF7), VIP3, VIP4, VIP5, and VIP6/ELF8] showed temperature-insensitive early flowering across a broad temperature range (10°C-27°C). Flowering of PAF1C-deficient mutants at 10°C was even earlier than that in flc, flm, and flc flm mutants, suggesting that PAF1C regulates additional factors. Indeed, RNA sequencing (RNA-Seq) of PAF1C-deficient mutants revealed downregulation of MAF2-MAF5 in addition to FLC and FLM at both 10 and 23°C. Consistent with the reduced expression of FLC and the FLC-clade members FLM/MAF1 and MAF2-MAF5, chromatin immunoprecipitation (ChIP)-quantitative PCR assays showed reduced levels of the permissive epigenetic modification H3K4me3/H3K36me3 and increased levels of the repressive modification H3K27me3 at their chromatin. Knocking down MAF2-MAF5 using artificial microRNAs (amiRNAs) in the flc flm background (35S::amiR-MAF2-5 flc flm) resulted in significantly earlier flowering than flc flm mutants and even earlier than short vegetative phase (svp) mutants at 10°C. Wild-type seedlings showed higher accumulation of FLC and FLC-clade gene transcripts at 10°C compared to 23°C. Our yeast two-hybrid assays and in vivo co-immunoprecipitation (Co-IP) analyses revealed that MAF2-MAF5 directly interact with the prominent floral repressor SVP. Late flowering caused by SVP overexpression was almost completely suppressed by the elf7 and vip4 mutations, suggesting that SVP-mediated floral repression required a functional PAF1C. Taken together, our results showed that PAF1C regulates the transcription of FLC and FLC-clade genes to modulate temperature-responsive flowering at a broad range of temperatures and that the interaction between SVP and these FLC-clade proteins is important for floral repression.

19.
Mol Plant ; 15(11): 1696-1709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36016495

RESUMO

Temperature is an important environmental cue that affects flowering time in plants. The MADS-box transcription factor FLOWERING LOCUS M (FLM) forms a heterodimeric complex with SHORT VEGETATIVE PHASE (SVP) and controls ambient temperature-responsive flowering in Arabidopsis. FLM-ß and FLM-δ, two major splice variants produced from the FLM locus, exert opposite effects on flowering, but the molecular mechanism by which the interaction between FLM isoforms and SVP affects temperature-responsive flowering remains poorly understood. Here, we show that FLM-ß and FLM-δ play important roles in modulating the temperature-dependent behavior, conformation, and stability of SVP. Nuclear localization of SVP decreases as temperature increases. FLM-ß is required for SVP nuclear translocation at low temperature, whereas SVP interacts with FLM-δ mainly in the cytoplasm at high temperature. SVP preferentially binds to FLM-ß at low temperature in tobacco leaf cells. SVP shows high binding affinity to FLM-ß at low temperature and to FLM-δ at high temperature. SVP undergoes similar structural changes in the interactions with FLM-ß and FLM-δ; however, FLM-δ likely causes more pronounced conformational changes in the SVP structure. FLM-δ causes rapid degradation of SVP at high temperature, compared with FLM-ß, possibly via ubiquitination. Mutation of lysine 53 or lysine 165 in SVP causes increased abundance of SVP due to reduced ubiquitination of SVP and thus delays flowering at high temperature. Our findings suggest that temperature-dependent differential interactions between SVP and FLM isoforms modulate the temperature-responsive induction of flowering in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Temperatura , Flores/metabolismo , Lisina/metabolismo , Regulação da Expressão Gênica de Plantas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Bio Protoc ; 12(10): e4421, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35813025

RESUMO

Protein-lipid interactions play important roles in many biological processes, including metabolism, signaling, and transport; however, computational and structural analyses often fail to predict such interactions, and determining which lipids participate in these interactions remains challenging. In vitro assays to assess the physical interaction between a protein of interest and a panel of phospholipids provide crucial information for predicting the functionality of these interactions in vivo. In this protocol, which we developed in the context of evaluating protein-lipid binding of the Arabidopsis thaliana florigen FLOWERING LOCUS T, we describe four independent in vitro experiments to determine the interaction of a protein with phospholipids: lipid-protein overlay assays, liposome binding assays, biotin-phospholipid pull-down assays, and fluorescence polarization assays. These complementary assays allow the researcher to test whether the protein of interest interacts with lipids in the test panel, identify the relevant lipids, and assess the strength of the interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA