RESUMO
Acute lung injury (ALI), a common clinical type of critical illness, is an acute hypoxic respiratory insufficiency caused by the damage of alveolar epithelial cells and capillary endothelial cells. In a previous study, we reported a novel lncRNA, lncRNA PFI, which could protect against pulmonary fibrosis in pulmonary fibroblasts. The present study demonstrated that lncRNA PFI was downregulated in alveolar epithelial cell of mice injury lung tissues, and further investigated the role of lncRNA PFI in regulating inflammation-induced alveolar epithelial cell apoptosis. Overexpression of lncRNA PFI could partially abrogated bleomycin induced type II AECs injured. Subsequently, bioinformatic prediction revealed that lncRNA PFI might directly bind to miR-328-3p, and further AGO-2 RNA binding protein immunoprecipitation (RIP) assay confirmed their binding relationship. Furthermore, miR-328-3p promoted apoptosis in MLE-12 cells by limiting the activation of the Creb1, a protein correlated with cell apoptosis, whereas AMO-328-3p ablated the pro-apoptosis effect of silencing lncRNA PFI in MLE-12 cells. While miR-328-3p could also ablate the function of lncRNA PFI in bleomycin treated human lung epithelial cells. Enhanced expression of lncRNA PFI reversed the LPS-induced lung injury in mice. Overall, these data reveal that lncRNA PFI mitigated acute lung injury through miR-328-3p/Creb1 pathway in alveolar epithelial cells.
Assuntos
Lesão Pulmonar Aguda , MicroRNAs , RNA Longo não Codificante , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Apoptose/genética , Síndrome do Desconforto Respiratório/metabolismo , Lipopolissacarídeos/efeitos adversos , Bleomicina/farmacologiaRESUMO
Myocardial infarction (MI) leads to the loss of cardiomyocytes, left ventricle dilation and cardiac dysfunction, eventually developing into heart failure. Mzb1 (Marginal zone B and B1 cell specific protein 1) is a B-cell-specific and endoplasmic reticulum-localized protein. Mzb1 is an inflammation-associated factor that participates a series of inflammatory processes, including chronic periodontitis and several cancers. In this study we investigated the role of Mzb1 in experimental models of MI. MI was induced in mice by ligation of the left descending anterior coronary artery, and in neonatal mouse ventricular cardiomyocytes (NMVCs) by H2O2 treatment in vitro. We showed that Mzb1 expression was markedly reduced in the border zone of the infarct myocardium of MI mice and in H2O2-treated NMVCs. In H2O2-treated cardiomyocytes, knockdown of Mzb1 decreased mitochondrial membrane potential, impaired mitochondrial function and promoted apoptosis. On contrary, overexpression of Mzb1 improved mitochondrial membrane potential, ATP levels and mitochondrial oxygen consumption rate (OCR), and inhibited apoptosis. Direct injection of lentiviral vector carrying Len-Mzb1 into the myocardial tissue significantly improved cardiac function and alleviated apoptosis in MI mice. We showed that Mzb1 overexpression significantly decreased the levels of Bax/Bcl-2 and cytochrome c and improved mitochondrial function in MI mice via activating the AMPK-PGC1α pathway. In addition, we demonstrated that Mzb1 recruited the macrophages and alleviated inflammation in MI mice. We conclude that Mzb1 is a crucial regulator of cardiomyocytes after MI by improving mitochondrial function and reducing inflammatory signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.
Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Regulação para Baixo , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.
Assuntos
Células Epiteliais Alveolares , Senescência Celular , Fibrose Pulmonar , Proteínas de Sinalização YAP , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Epiteliais Alveolares/metabolismo , Bleomicina , Linhagem Celular , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismoRESUMO
Identifying robust breast cancer subtypes will help to reveal the cancer heterogeneity. However, previous breast cancer subtypes were based on population-level quantitative gene expression, which is affected by batch effects and cannot be applied to individuals. We detected differential gene expression, genomic, and epigenomic alterations to identify driver differential expression at the individual level. The individual driver differential expression reflected the breast cancer patients' heterogeneity and revealed four subtypes. Mesenchymal subtype as the most aggressive subtype harbored deletion and downregulated expression of genes in chromosome 11q23 region. Specifically, silencing of the SDHD gene in 11q23 promoted the invasion and migration of breast cancer cells in vitro by the epithelial-mesenchymal transition. The immunologically hot subtype displayed an immune-hot microenvironment, including high T-cell infiltration and upregulated PD-1 and CTLA4. Luminal and genomic-unstable subtypes showed opposite macrophage polarization, which may be regulated by the ligand-receptor pairs of CD99. The integration of multi-omics data at the individual level provides a powerful framework for elucidating the heterogeneity of breast cancer.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Multiômica , Genômica , Epigenômica , Microambiente Tumoral/genéticaRESUMO
Non-small cell lung cancer (NSCLC) is highly malignant and heterogeneous form of lung cancer and involves various oncogene alterations. Glycolysis, an important step in tumor metabolism, is closely related to cancer progression. In this study, we investigated the biological function and mechanism of action of Gankyrin in glycolysis and its association with NSCLC. Analyzed of data from The Cancer Genome Atlas as well as NSCLC specimens and adjacent tissues demonstrated that Gankyrin expression was upregulated in NSCLC tissues compared to adjacent normal tissues. Gankyrin was found to significantly aggravate cancer-related phenotypes, including cell viability, migration, invasion, and epithelial mesenchymal transition (EMT), whereas Gankyrin silencing alleviated the malignant phenotype of NSCLC cells. Our results reveal that Gankyrin exerted its function by regulating YAP1 expression and increasing its nuclear translocation. Importantly, YAP1 actuates glycolysis, which involves glucose uptake, lactic acid production, and ATP generation and thus might contribute to the tumorigenic effect of Gankyrin. Furthermore, the Gankyrin-accelerated glycolysis in NSCLC cells was reversed by YAP1 deficiency. Gankyrin knockdown reduced A549 cell tumorigenesis and EMT and decreased YAP1 expression in a subcutaneous xenograft nude mouse model. In conclusion, both Gankyrin and YAP1 play important roles in tumor metabolism, and Gankyrin-targeted inhibition may be a potential anti-cancer therapeutic strategy for NSCLC.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unknown etiology and limited therapeutic options. Activation of fibroblasts is a prominent feature of pulmonary fibrosis. Here we report that lncRNA DACH1 (dachshund homolog 1) is downregulated in the lungs of IPF patients and in an experimental mouse model of lung fibrosis. LncDACH1 knockout mice develop spontaneous pulmonary fibrosis, whereas overexpression of LncDACH1 attenuated TGF-ß1-induced aberrant activation, collagen deposition and differentiation of mouse lung fibroblasts. Similarly, forced expression of LncDACH1 not only prevented bleomycin (BLM)-induced lung fibrosis, but also reversed established lung fibrosis in a BLM model. Mechanistically, LncDACH1 binding to the serine/arginine-rich splicing factor 1 (SRSF1) protein decreases its activity and inhibits the accumulation of Ctnnb1. Enhanced expression of SRSF1 blocked the anti-fibrotic effect of LncDACH1 in lung fibroblasts. Furthermore, loss of LncDACH1 promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in mouse lung fibroblasts, whereas such effects were abolished by silencing of Ctnnb1. In addition, a conserved fragment of LncDACH1 alleviated hyperproliferation, ECM deposition and differentiation of MRC-5 cells driven by TGF-ß1. Collectively, LncDACH1 inhibits lung fibrosis by interacting with SRSF1 to suppress CTNNB1 accumulation, suggesting that LncDACH1 might be a potential therapeutic target for pulmonary fibrosis.
RESUMO
Long non-coding RNA (lncRNA) was reported to be a critical regulator of cellular homeostasis, but poorly understood in idiopathic pulmonary fibrosis (IPF). Here, we systematically identified a crucial lncRNA, p53-induced long non-coding RNA TP53 target 1 (TP53TG1), which was the dysregulated hub gene in IPF regulatory network and one of the top degree genes and down-regulated in IPF-drived fibroblasts. Functional experiments revealed that overexpression of TP53TG1 attenuated the increased expression of fibronectin 1 (Fn1), Collagen 1α1, Collagen 3α1, ACTA2 mRNA, Fn1, and Collagen I protein level, excessive fibroblasts proliferation, migration and differentiation induced by TGF-ß1 in MRC-5 as well as PMLFs. In vivo assays identified that forced expression of TP53TG1 by adeno-associated virus 5 (AAV5) not only prevented BLM-induced experimental fibrosis but also reversed established lung fibrosis in the murine model. Mechanistically, TP53TG1 was found to bind to amount of tight junction proteins. Importantly, we found that TP53TG1 binds to the Myosin Heavy Chain 9 (MYH9) to inhibit its protein expression and thus the MYH9-mediated activation of fibroblasts. Collectively, we identified the TP53TG1 as a master suppressor of fibroblast activation and IPF, which could be a potential hub for targeting treatment of the disease.
Assuntos
Fibrose Pulmonar Idiopática , RNA Longo não Codificante , Animais , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Pulmonary fibrosis (PF) is a type of interstitial pneumonia with complex etiology and high mortality, characterized by progressive scarring of the alveolar interstitium and myofibroblastic lesions. Recently, there has been growing appreciation of the importance of long non-coding RNAs (lncRNAs) in organ fibrosis. The aim of this study was to investigate the role of lncRNAs in lung fibrosis. We used a qRT-PCR assay to identify dysregulated lncRNAs in the lungs of mice with experimental, bleomycin (BLM)-induced pulmonary fibrosis, and a series of molecular assays to assess the role of the novel lncRNA NONMMUT060091, designated as pulmonary fibrosis inhibitor (PFI), which was significantly downregulated in lung fibrosis. Functionally, knockdown of endogenous PFI by smart silencer promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in primary mouse lung fibroblasts (MLFs). In contrast, overexpression of PFI partially abrogated TGF-ß1-induced fibrogenesis both in MLFs and in the human fetal lung fibroblast MRC-5 cells. Similarly, PFI overexpression attenuated BLM-induced pulmonary fibrosis compared with wild type (WT) mice. Mechanistically, using chromatin isolation by RNA purification-mass spectrometry (ChIRP-MS) and an RNA pull-down assay, PFI was found to directly bind Serine/arginine-rich splicing factor 1 (SRSF1), and to repress its expression and pro-fibrotic activity. Furthermore, silencing of SRSF1 inhibited TGF-ß1-induced proliferation, differentiation, and ECM deposition in MRC-5 cells by limiting the formation of the EDA+Fn1 splicing isoform; whereas forced expression of SRSF1 by intratracheal injection of adeno-associated virus 5 (AAV5) ablated the anti-fibrotic effect of PFI in BLM-treated mice. Overall, these data reveal that PFI mitigated pulmonary fibrosis through negative regulation of the expression and activity of SRSF1 to decrease the formation of the EDA+Fn1 splicing isoform, and suggest that PFI and SRSF1 may serve as potential targets for the treatment of lung fibrosis.
Assuntos
RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Transdução de SinaisRESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, debilitating disease with unknown etiopathogenesis. Previous reports have reported that long non-coding RNAs (lncRNAs) were involved in various pathophysiological processes. However, the role of lncRNAs in IPF has not been fully described. We aimed to explore the relationship between miR-15a and lncRNA PFAR and its function in pulmonary fibrosis. Biological information analysis and luciferase were used to identify targeted binding of lncRNA PFAR and miR-15a. Western blot, quantitative reverse transcription-PCR (qRT-PCR) and immunofluorescence staining were conducted to detect fibrosis-related factors. Fibroblasts proliferation were analyzed using 5-ethynyl-2'-deoxyuridine (EdU) staining and fibroblasts migration ability were measured using wound-healing scratch assay. We identified that lncRNA PFAR has a binding site with miR-15a and luciferase reporter assays demonstrated their combinative relationship. Our results showed that silencing PFAR attenuated TGF-ß1 induced fibrogenesis in primary lung fibroblasts. And miR-15a antagonized the function of PFAR and inhibited PFAR induced extracellular collagen deposition, fibroblasts proliferation, migration and differentiation. In conclusion, our results revealed that PFAR functions as a competitive endogenous RNA (ceRNA) by acting as a sponge for miR-15a, revealing a potential regulatory network involving PFAR and miR-15a with a role in the modulation of YAP1-Twist expression. This mechanism may contribute to a better understanding of pulmonary fibrosis pathogenesis and treatment method.
Assuntos
Colágeno Tipo I/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Pareamento de Bases , Sequência de Bases , Bleomicina/administração & dosagem , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Cultura Primária de Células , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas de Sinalização YAPRESUMO
Pulmonary fibrosis is a progressive disease characterized by epithelial cell damage, fibroblast proliferation, excessive extracellular matrix (ECM) deposition, and lung tissue scarring. Melatonin, a hormone produced by the pineal gland, plays an important role in multiple physiological and pathological responses in organisms. However, the function of melatonin in the development of bleomycin-induced pulmonary injury is poorly understood. In the present study, we found that melatonin significantly decreased mortality and restored the function of the alveolar epithelium in bleomycin-treated mice. However, pulmonary function mainly depends on type II alveolar epithelial cells (AECIIs) and is linked to mitochondrial integrity. We also found that melatonin reduced the production of reactive oxygen species (ROS) and prevented apoptosis and senescence in AECIIs. Luzindole, a nonselective melatonin receptor antagonist, blocked the protective action of melatonin. Interestingly, we found that the expression of apelin 13 was significantly downregulated in vitro and in vivo and that this downregulation was reversed by melatonin. Furthermore, ML221, an apelin inhibitor, disrupted the beneficial effects of melatonin on alveolar epithelial cells. Taken together, these results suggest that melatonin alleviates lung injury through regulating apelin 13 to improve mitochondrial dysfunction in the process of bleomycin-induced pulmonary injury.