RESUMO
The chemistry of the Meisenheimer complexes is of fundamental interest in organic chemistry. While the nitro group has been extensively employed to facilitate the formation and stabilization of Meisenheimer complexes, the analogous application of more user-friendly ester groups has remained an unexplored frontier. Herein, we report ester-stabilized Meisenheimer complexes, which have remarkable air-, moisture-, and thermo-stability. Moreover, the isolable and well-defined Meisenheimer intermediates exhibit divergent reactivity for dearomatization reactions, including modular 1,4-additions, dearomative (2 + 3) cycloadditions, and even higher-order (4 + n) cycloadditions. These methodologies enabled rapid access to complicated cyclohexane derivatives with multiple all-carbon quaternary centers and interesting structure topologies.
RESUMO
BACKGROUND: Growing evidence indicated that to develop of atherosclerosis observed more often by people with Alzheimer's disease (AD), but the underlying mechanism is not fully clarified. Considering that amyloid-ß (Aß) deposition in the brain is the key pathophysiology of AD and plasma Aß is closely relate to Aß deposition in the brain, in the present study, we investigated the relationships between atherosclerosis and plasma Aß levels. METHODS: This was a population based cross-sectional study. Patients with high risk of atherosclerosis from Qubao Village, Xi'an were underwent carotid ultrasound for assessment of atherosclerosis. Venous blood was collected on empty stomach in the morning and plasma Aß1-40 and Aß1-42 levels were measured using ELISA. Multivariate logistic regression analysis was performed to investigate the relationships between carotid atherosclerosis (CAS) and plasma Aß levels. RESULTS: Among 344 patients with high risk of atherosclerosis, 251(73.0%) had CAS. In the univariate analysis, the plasma Aß levels had no significant differences between CAS group and non-CAS group (Aß1-40: 53.07 ± 9.24 pg/ml vs. 51.67 ± 9.11pg/ml, p = 0.211; Aß1-42: 40.10 ± 5.57 pg/ml vs. 40.70 pg/ml ± 6.37pg/ml, p = 0.285). Multivariate logistic analysis showed that plasma Aß levels were not associated with CAS (Aß1-40: OR = 1.019, 95%CI: 0.985-1.054, p = 0.270;Aß1-42: OR = 1.028, 95%CI: 0.980-1.079, p = 0.256) in the total study population. After stratified by hypertension, CAS was associated with plasma Aß1-40 positively (OR = 1.063, 95%CI: 1.007-1.122, p = 0.028) in the non-hypertension group, but not in hypertensive group. When the plasma Aß concentrations were classified into four groups according to its quartile, the highest level of plasma Aß1-40 group was associated with CAS significantly (OR = 4.465, 95%CI: 1.024-19.474, p = 0.046). CONCLUSION: Among patients with high risk of atherosclerosis, CAS was associated with higher plasma Aß1-40 level in non-hypertension group, but not in hypertension group. These indicated that atherosclerosis is associated with plasma Aß level, but the relationship may be confounded by hypertension.
Assuntos
Peptídeos beta-Amiloides , Aterosclerose , Fragmentos de Peptídeos , Humanos , Masculino , Feminino , Peptídeos beta-Amiloides/sangue , Estudos Transversais , Idoso , Pessoa de Meia-Idade , Aterosclerose/sangue , Aterosclerose/epidemiologia , Fragmentos de Peptídeos/sangue , Fatores de Risco , Hipertensão/sangue , Hipertensão/epidemiologiaRESUMO
Fluorescent probes to detect biologically important acetate ion (AcO-) are essential for regulating substance metabolism, alleviating inflammatory symptoms, reducing cancer incidence, and diagnosing early diseases. However, the relatively small charge-to-atomic radius ratio in AcO- and its triangular spatial structure pose challenges in recognition and often lead to interference from other anions in detection methods. Herein, we introduce a quinoxaline fluorescent probe, o-(4-(2-(3-oxo-3,4 -dihydroqui-noxalin-2-yl)vinyl)phenyl) dimethylaminothiophene ester (QPDMT), specifically design and synthetic for the accurate detection of AcO-. This probe leverages molecular nucleophilicity and electron transfer to undergo a reaction that releases the fluorophore upon cleavage of the thioformyl ether bond, exhibiting a turn-on fluorescence response at 530 nm. QPDMT exhibits an impressively low detection limit of 30 nM, a rapid response time of 20 min, a robust linear response in the 1-9 µM range and excellent fluorescence quantum yield, 0.32. Importantly, this probe demonstrates low cytotoxicity, making it an ideal candidate for endogenous AcO- detection in living cells and organisms.
RESUMO
Covalent organic frameworks (COFs) have been widely studied in photocatalytic CO2 reduction reaction (CO2 RR). However, pristine COFs usually exhibit low catalytic efficiency owing to the fast recombination of photogenerated electrons and holes. In this study, we fabricated a stable COF-based composite (GO-COF-366-Co) by covalently anchoring COF-366-Co on the surface of graphene oxide (GO) for the photocatalytic CO2 reduction. Interestingly, in absolute acetonitrile (CH3 CN), GO-COF-366-Co shows a high selectivity of 94.4 % for the photoreduction of CO2 to formate, with a formate yield of 15.8â mmol/g, which is approximately four times higher than that using the pristine COF-366-Co. By contrast, in CH3 CN/H2 O (v : v=4 : 1), the main product for the photocatalytic CO2 reduction over GO-COF-366-Co is CO (96.1 %), with a CO yield as high as 52.2â mmol/g, which is also approximately four times higher than that using the pristine COF-366-Co. Photoelectrochemical experiments demonstrate the covalent bonding of COF-366-Co and GO to form the GO-COF-366-Co composite facilitates charge separation and transfer significantly, thereby accounting for the enhanced catalytic activity. In addition, theoretical calculations and in situ Fourier transform infrared spectroscopy reveal H2 O can stabilize the *COOH intermediate to further form a *CO intermediate via O-H(aq)â â â O(*COOH) hydrogen bonding, thus explaining the regulated photocatalytic performance.
RESUMO
Cerebral amyloid-ß (Aß) accumulation due to impaired Aß clearance is a pivotal event in the pathogenesis of Alzheimer's disease (AD). Considerable brain-derived Aß is cleared via transporting to the periphery. The liver is the largest organ responsible for the clearance of metabolites in the periphery. Whether the liver physiologically clears circulating Aß and its therapeutic potential for AD remains unclear. Here, we found that about 13.9% of Aß42 and 8.9% of Aß40 were removed from the blood when flowing through the liver, and this capacity was decreased with Aß receptor LRP-1 expression down-regulated in hepatocytes in the aged animals. Partial blockage of hepatic blood flow increased Aß levels in both blood and brain interstitial fluid. The chronic decline in hepatic Aß clearance via LRP-1 knockdown specific in hepatocytes aggravated cerebral Aß burden and cognitive deficits, while enhancing hepatic Aß clearance via LRP-1 overexpression attenuated cerebral Aß deposition and cognitive impairments in APP/PS1 mice. Our findings demonstrate that the liver physiologically clears blood Aß and regulates brain Aß levels, suggesting that a decline of hepatic Aß clearance during aging could be involved in AD development, and hepatic Aß clearance is a novel therapeutic approach for AD.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos Transgênicos , Modelos Animais de DoençasRESUMO
With the increasing issues of environmental degradation and health problem, the selective detection of toxic ions has attracted considerable attention from researchers. Chemical fluorescent sensors with the advantages of facile operation, high sensitivity, rapid response, and easy visualization are emerging as powerful detection tools towards ions. However, the selective recognition of ions is always hindered by the presence of other interfering substances. Herein, we show that supramolecular host-guest interaction based on a pillar[5]arene provides a new opportunity to regulate the ionic recognition properties of guest molecules. A pillar[5]arene-based host-guest complex HG was constructed through the host-guest interaction between ammonium functionalized pillar[5]arene (HAP5) and 2,2'-bibenzimidazole (G). The host-gust complex HG can realize the successive, highly selective, and sensitive detection of specific ions. It was found that only in the presence of HAP5, the sensitivity towards cations was evidently enhanced, and selective successive recognition for I- and HSO4- was achieved. Those results indicate that the introduction of HAP5 can effectively improve the ion recognition performance of 2,2'-bibenzimidazole, so it is a feasible strategy using supramolecular host-guest interaction to regulate the ionic recognition properties of guest molecules.
RESUMO
The development of hierarchically porous metal-organic frameworks (MOFs) with high stability is desirable to expand their applications but remains challenging. Herein, an anionic sodalite-type microporous MOF (Yb-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was synthesized, which shows outstanding catalytic activities for the cycloaddition of CO2 into cyclic carbonates. Moreover, the microporous Yb-TTCA can be transformed into a hierarchical micro- and mesoporous Yb-TTCA by water treatment with the mesopore sizes of 2 to 12 nm. The hierarchically porous Yb-TTCA (HP-Yb-TTCA) not only exhibits a high thermal stability up to 500 °C but also shows a high chemical stability in aqueous solutions with pH values ranging from 2 to 12. In addition, the HP-Yb-TTCA displays enhanced performance for the removal of organic dyes in comparison with microporous Yb-TTCA. This work provides a facile way to construct hierarchically porous MOF materials.
RESUMO
The unraveling of the stimuli-responsive mechanism is crucial to the design and precise synthesis of stimuli-responsive luminescent materials. We report herein the mechanochromic and selective vapochromic solid-state luminescence properties of a new bimetallic cuprous complex [{Cu(bpmtzH)}2(µ-dppm)2](ClO4)2 (1), and the corresponding response mechanisms are elucidated by investigating its two different solvated polymorphs 1·2CH2Cl2 (1-g) and 1·2CHCl3 (1-c). Green-emissive 1-g and cyan-emissive 1-c can be interconverted upon alternate exposure to CHCl3 and CH2Cl2 vapors, which is principally attributable to a combined alteration of both intermolecular NHbpmtzH···OClO3- hydrogen bonds and intramolecular "triazolyl/phenyl" π···π interactions induced by different solvents. Solid-state luminescence mechanochromism present in 1-g and 1-c is mainly ascribed to the grinding-induced breakage of the NHbpmtzH···OClO3- hydrogen bonds. It is suggested that intramolecular π···π-triazolyl/phenyl interactions are affected by different solvents but not by grinding. The results provide new insights into the design and precise synthesis of multi-stimuli-responsive luminescent materials by the comprehensive use of intermolecular hydrogen bonds and intramolecular π···π interactions.
RESUMO
Objective To compare the clinical effects of three treatment methods including systemic thrombolysis(ST),catheter-directed thrombolysis(CDT),and AngioJet percutaneous mechanical thrombectomy(PMT)in acute lower extremity deep venous thrombosis(LEDVT). Methods The data of 82 patients diagnosed with LEDVT in the Department of Vascular and Gland Surgery of the First Affiliated Hospital of Hebei North University from January 2017 to December 2020 were collected.The patients were assigned into a ST group(n=50),a CDT group(n=16),and a PMT group(n=16)according to different treatment methods.The efficacy and safety were compared among the three groups. Results Compared with that before treatment,the circumferential diameter difference of both lower limbs on days 1,2,and 3 of treatment in the ST,CDT,and PMT groups reduced(all P<0.001).The PMT group showed smaller circumferential diameter difference of lower limbs on days 1,2,and 3 of treatment than the ST group(all P<0.001)and smaller circumferential diameter difference of the lower patellar margin on day 1 of treatment than the CDT group(P<0.001).The PMT group showed higher diminution rate for swelling of the affected limb at the upper and lower edges of the patella than the ST group(P<0.001)and higher diminution rate for swelling at the upper edge of the patella than the CDT group(P=0.026).The incidence of complications after treatment showed no significant differences among the three groups(all P>0.05).The median of hospital stay in the PMT group was shorter than that in the ST and CDT groups(P=0.002,P=0.001).The PMT group had higher thrombus clearance rate than the ST group(P=0.002)and no significant difference in the thrombus clearance rate from the CDT group(P=0.361).The vascular recanalization rates in the PMT(all P<0.001)and CDT(P<0.001,P=0.002,P=0.009)groups 3,6,and 12 months after treatment were higher than those in ST group,and there were no significant differences between PMT and CDT groups(P=0.341,P=0.210,P=0.341). Conclusions ST,CDT,and PMT demonstrated significant efficacy in the treatment of LEDVT,and PMT was superior to ST and CDT in terms of circumferential diameter difference of the lower limbs,diminution rate for swelling of the affected limb,thrombus clearance rate,length of hospital stay,and long-term vascular recanalization.There was no obvious difference in safety among the three therapies.
Assuntos
Terapia Trombolítica , Trombose Venosa , Humanos , Terapia Trombolítica/métodos , Fibrinolíticos/uso terapêutico , Resultado do Tratamento , Trombectomia/métodos , Trombose Venosa/complicações , Trombose Venosa/tratamento farmacológico , Extremidade Inferior/irrigação sanguínea , Catéteres , Estudos RetrospectivosRESUMO
Cross-contamination during pharmaceutical drug manufacturing can result in expensive recalls. To counter that, companies spend significant time and resources to ensure equipment cleanliness, often relying on the compound solubility data in various solvents as the main indicator of cleaning success. The aim of this work is to provide an alternative way to analyze the fouling and cleaning of surfaces in pharmaceutical manufacturing processes by using the quartz crystal microbalance with dissipation (QCM-D) and Raman spectroscopy. In this study, we chose an active pharmaceutical ingredient (API), sitagliptin phosphate monohydrate (SIT), as the model drug compound and observed its adsorption and desorption on stainless steel (SS2343), borosilicate glass (glass), and polytetrafluoroethylene (PTFE) surfaces. SIT was selected as the model API since it is a product manufactured on a large scale and is part of the widely used dipeptidyl peptidase-IV inhibitor class of oral hypoglycemics used to treat type 2 diabetes mellitus, while the chosen surfaces mimic the wall materials of manufacturing equipment and components such as reactors, transfer lines, and valves. Both the QCM-D and Raman spectroscopy results show the highest physisorption on PTFE, followed by SS2343 and glass. Additionally, QCM-D revealed a harder removal of SIT from SS2343 compared to glass and PTFE. Raman analysis of the chemical interactions disclosed C-F and CâO bond interactions between SIT and the surfaces, and the lack of a peak shift suggested dipole-dipole interactions. Furthermore, contact angle measurements indicate that hydrophobic attraction contributed to SIT adhesion to the PTFE surface. Subsequently, SIT coverage upon deposition on a PTFE surface has a significantly smaller surface area than on SS2343 and glass due to surface hydrophobicity, hence resulting in a longer removal time. These results provide a practical use of QCM-D and Raman spectroscopy to enhance the understanding of fouling and improve the cleaning of complex small molecules on relevant surfaces during the pharmaceutical manufacturing process.
Assuntos
Diabetes Mellitus Tipo 2 , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Humanos , Preparações Farmacêuticas , Politetrafluoretileno , Fosfato de Sitagliptina , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
A semiconductor nano-material was prepared, and its degradation efficiency of zearalenone (ZEN) was studied. The photocatalytic material graphitic carbon nitride (g-C3 N4 ) was synthesized by the traditional method of hot cracking. Its structure was characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation experiment showed that under the irradiation of ultraviolet (UV) lamp (254 nm, including 185 nm), g-C3 N4 could induce photocatalytic effect, which provided a new method for the degradation of ZEN in real powder samples. The experimental conditions of photocatalytic degradation of the primary reference material of ZEN and ZEN in real powder samples were explored. And the degradation products of ZEN were analyzed after high-performance liquid chromatography-mass spectrometry (HPLC-MS). Under each optimal experimental conditions, the degradation rate on primary reference material of ZEN and ZEN in real powder samples was 96.0% and 50.0%, respectively. The results in this work provide a theoretical reference and practical basis for the photocatalytic degradation of mycotoxin in real powder samples by g-C3 N4 .
Assuntos
Grafite , Zearalenona , Catálise , Luz , Compostos de NitrogênioRESUMO
INTRODUCTION: The total lignans from Fructus arctii (TLFA) is a mixture of a series of lignans isolated from dried ripe fruit of Arctium lappa L. We previously reported on the pharmacological activity of TLFA that is related to diabetes. An accurate and practical TLFA quantitative analysis method for utilising it needs to be established. OBJECTIVE: This study aimed to develop an effective quantitative analysis method for assessing the TLFA quality. METHODS: A total of 11 marker components were confirmed by analysing the high-performance liquid chromatography fingerprints of 24 batches of TLFA samples. The samples were prepared from TLFA and structurally identified as lappaol H, lappaol C, arctiin, arctignan D, arctignan E, matairesinol, arctignan G, isolappaol A, lappaol A, arctigenin, and lappaol F. In the quantitative analysis of multi-components by the single-marker (QAMS) method and with arctiin as an internal reference substance, the content of these lignans in TLFA was simultaneously determined according to their relative correction factors with arctiin. RESULTS: There was no significant difference between results measured by the QAMS and traditional external standard methods. Hierarchical cluster and principal component analyses were performed to evaluate 24 TLFA batches based on the contents of 10 marker components. The results revealed that QAMS method combined with chemometric analyses could accurately measure and clearly distinguish the different quality samples of TLFA. CONCLUSION: The QAMS method is a reliable and promising quality control method for TLFA. It can provide a reference for promoting quality control of complex multi-component systems, especially for traditional Chinese medicine.
Assuntos
Arctium , Medicamentos de Ervas Chinesas , Lignanas , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Lignanas/análise , Arctium/química , Controle de Qualidade , Medicamentos de Ervas Chinesas/químicaRESUMO
Intracellular tau accumulation forming neurofibrillary tangles is hallmark pathology of Alzheimer's disease (AD), but how tau accumulation induces synapse impairment is elusive. By overexpressing human full-length wild-type tau (termed hTau) to mimic tau abnormality as seen in the brain of sporadic AD patients, we find that hTau accumulation activates JAK2 to phosphorylate STAT1 (signal transducer and activator of transcription 1) at Tyr701 leading to STAT1 dimerization, nuclear translocation, and its activation. STAT1 activation suppresses expression of N-methyl-D-aspartate receptors (NMDARs) through direct binding to the specific GAS element of GluN1, GluN2A, and GluN2B promoters, while knockdown of STAT1 by AAV-Cre in STAT1flox/flox mice or expressing dominant negative Y701F-STAT1 efficiently rescues hTau-induced suppression of NMDAR expression with amelioration of synaptic functions and memory performance. These findings indicate that hTau accumulation impairs synaptic plasticity through JAK2/STAT1-induced suppression of NMDAR expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.
Assuntos
Regulação da Expressão Gênica , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Fator de Transcrição STAT1/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Janus Quinase 2/metabolismo , Transtornos da Memória/psicologia , Camundongos , Modelos Biológicos , Plasticidade Neuronal , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Proteínas tau/genéticaRESUMO
The exploitation of highly stable and active catalysts for the conversion of CO2 into valuable fuels is desirable but is a great challenge. Herein, we report that the incorporation of chromophores into metal-organic frameworks (MOFs) could afford robust catalysts for efficient CO2 conversion. Specifically, a porous Nd(III) MOF (Nd-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was constructed by incorporating one-dimensional Nd(CO2)n chains and TTCA3- ligands, which exhibits a very high stability, retaining its framework not only in the air at 300 °C for 2 h but also in boiling aqueous solutions at pH 1-12 for 7 days. More importantly, Nd-TTCA has achieved a 5-fold improvement in photocatalytic activity for reducing CO2 to HCOOH and a 10-fold improvement in catalytic activity for the cycloaddition of CO2 into cyclic carbonate in comparison to those of H3TTCA itself. This work gives a new strategy to design efficient artificial crystalline catalysts for CO2 conversion.
RESUMO
Three-dimensional (3D) in vitro tumour spheroid experiments are an important tool for studying cancer progression and potential cancer drug therapies. Standard experiments involve growing and imaging spheroids to explore how different conditions lead to different rates of spheroid growth. These kinds of experiments, however, do not reveal any information about the spatial distribution of the cell cycle within the expanding spheroid. Since 2008, a new experimental technology called fluorescent ubiquitination-based cell cycle indicator (FUCCI) has enabled real-time in situ visualisation of the cell cycle progression. Observations of 3D tumour spheroids with FUCCI labelling reveal significant intratumoural structure, as the cell cycle status can vary with location. Although many mathematical models of tumour spheroid growth have been developed, none of the existing mathematical models are designed to interpret experimental observations with FUCCI labelling. In this work, we adapt the mathematical framework originally proposed by Ward and King (Math Med Biol 14:39-69, 1997. https://doi.org/10.1093/imammb/14.1.39 ) to produce a new mathematical model of FUCCI-labelled tumour spheroid growth. The mathematical model treats the spheroid as being composed of three subpopulations: (i) living cells in G1 phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green; and (iii) dead cells that are not fluorescent. We assume that the rates at which cells pass through different phases of the cell cycle, and the rate of cell death, depend upon the local oxygen concentration. Parameterising the new mathematical model using experimental measurements of cell cycle transition times, we show that the model can qualitatively capture important experimental observations that cannot be addressed using previous mathematical models. Further, we show that the mathematical model can be used to qualitatively mimic the action of anti-mitotic drugs applied to the spheroid. All software programs required to solve the nonlinear moving boundary problem associated with the new mathematical model are available on GitHub. at https://github.com/wang-jin-mathbio/Jin2021.
Assuntos
Modelos Biológicos , Neoplasias , Ciclo Celular , Divisão Celular , Progressão da Doença , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/terapiaRESUMO
The neonicotinoid pesticide, imidacloprid (IMI), is frequently detected in the environment and in foods. It is absorbed and metabolized by the intestine; however, its effects on intestinal barrier integrity are not well studied. We investigated whether IMI disrupts the permeability of the intestinal epithelial barrier via in vivo tests on male Wistar rats, in vitro assays using the human intestinal epithelial cell line, Caco-2, and in silico analyses. A repeated oral dose 90-day toxicity study was performed (0.06 mg/kg body weight/day). IMI exposure significantly increased intestinal permeability, which led to significantly elevated serum levels of endotoxin and inflammatory biomarkers (tumor necrosis factor-alpha and interleukin-1 beta) without any variation in body weight. Decreased transepithelial electrical resistance with increased permeability was also observed in 100 nM and 100 µM IMI-treated Caco-2 cell monolayers. Amounts of tight junction proteins in IMI-treated colon tissues and between IMI-treated Caco-2 cells were significantly lower than those of controls. Increased levels of myosin light chain phosphorylation, myosin light chain kinase (MLCK), and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) phosphorylation were found in IMI-exposed cells compared with control cells. Furthermore, the barrier loss caused by IMI was rescued by the MLCK inhibitor, ML-7, and cycloheximide. Pregnane X receptor (PXR, NR1I2) was inhibited by low-dose IMI treatment. In silico analysis indicated potent binding sites between PXR and IMI. Together, these data illustrate that IMI induces intestinal epithelial barrier disruption and produces an inflammatory response, involving the down-regulation of tight junctions and disturbance of the PXR-NF-κB p65-MLCK signaling pathway. The intestinal barrier disruption caused by IMI deserves attention in assessing the safety of this neonicotinoid pesticide.
Assuntos
Mucosa Intestinal , Junções Íntimas , Animais , Células CACO-2 , Humanos , Intestinos , Masculino , Neonicotinoides/toxicidade , Nitrocompostos , Permeabilidade , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfaRESUMO
An aptasensor for electrochemical detection of carbendazim is reported with mulberry fruit-like gold nanocrystal (MF-Au)/multiple graphene aerogel (MGA) and DNA cycle amplification. HAuCl4 was reduced by ascorbic acid in a CTAC solution containing KBr and KI and formed trioctahedron gold nanocrystal. The gold nanocrystal underwent structural evolution under enantioselective direction of L-cysteine. The resulting MF-Au shows a mulberry fruit-like nanostructure composed of gold nanocrystals of about 200 nm as the core and many irregular gold nanoparticles of about 30 nm as the shell. The exposure of high-index facets improves the catalytic activity of MF-Au. MF-Au/MGA was used for the construction of an aptasensor for electrochemical detection of carbendazim. The aptamer hybridizes with assistant strand DNA to form duplex DNA. Carbendazim binds with the formed duplex DNA to release assistant strand DNA, triggering one three-cascade DNA cycle. The utilization of a DNA cycle allows one carbendazim molecule to bring many methylene blue-labeled DNA fragments to the electrode surface. This promotes significant signal amplification due to the redox reaction of methylene blue. The detection signal is further enhanced by the catalysis of MF-Au and MGA towards the redox of methylene blue. A differential pulse voltammetric signal, best measured at - 0.32 V vs. Ag/AgCl, increases linearly with the carbendazim concentration ranging from 1.0 × 10-16 to 1.0 × 10-11 M with a detection limit of 4.4 × 10-17 M. The method provides ultrahigh sensitivity and selectivity and was successfully applied to the electrochemical detection of carbendazim in cucumber. This study reports on an ultrasensitive aptasensor for electrochemical detection of carbendazim in cucumber based on mulberry fruit-like gold nanocrystal-multiple graphene aerogel and DNA cycle double amplification.
Assuntos
Aptâmeros de Nucleotídeos/química , Benzimidazóis/análise , Técnicas Biossensoriais/métodos , Carbamatos/análise , DNA/química , Nanopartículas Metálicas/química , Benzimidazóis/química , Carbamatos/química , Cisteína/química , Técnicas Eletroquímicas/métodos , Géis/química , Ouro/química , Grafite/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Azul de Metileno/química , OxirreduçãoRESUMO
STUDY DESIGN: Prospective study. PURPOSE: The main purpose of this study was to investigate whether the use of a tourniquet changes the blood coagulation state following primary total knee arthroplasty (TKA) by means of conventional coagulation tests and thromboelastography (TEG) analyses. METHODS: A total of 154 patients who underwent primary unilateral TKA from January 2018 to October 2020 were enrolled. Seventy-nine patients were randomized into a tourniquet group, and 75 were randomized into a no-tourniquet group. Demographic data, surgical time, intra-operative blood loss, transfusion rate, and wound complications were collected. Complete blood count, conventional coagulation tests, and TEG were performed the day before surgery, one day after surgery, three days after surgery, and seven days after surgery. Lower extremity Doppler ultrasound was performed the day before surgery and seven days after surgery. RESULTS: The baseline characteristics of the patients were similar between the two groups. Hidden blood loss, transfusion rate, and wound complications were similar between the two groups, but the intra-operative blood loss of the tourniquet group was lower than that of the no-tourniquet group. The calculated total blood loss of the tourniquet group was higher than that of the no-tourniquet group. In terms of conventional coagulation tests and TEG, the tourniquet group had higher values of fibrin degradation products, D-dimer, maximum amplitude, and coagulation index (p < 0.001). The incidence of deep vein thrombosis (DVT) in the tourniquet group was higher than that in the no-tourniquet group (21.5% compared with 8%; p = 0.019). CONCLUSION: The application of a tourniquet during TKA significantly increases the amount of calculated total blood loss and does not decrease the post-operative transfusion rate. Using a tourniquet in routine TKA exacerbates the early post-operative hypercoagulable status together with a higher incidence of below-knee asymptomatic DVT observed via conventional coagulation tests, TEG, and ultrasonic Doppler.
Assuntos
Artroplastia do Joelho , Artroplastia do Joelho/efeitos adversos , Perda Sanguínea Cirúrgica/prevenção & controle , Humanos , Estudos Prospectivos , Tromboelastografia , TorniquetesRESUMO
We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) on control and TGF-ß1-exposed rat lung fibroblasts to identify proteins differentially expressed between cell populations. A total of 196 proteins were found to be differentially expressed in response to TGF-ß1 treatment. Guided by these results, we next determined whether similar changes in protein expression were detectable in the rat lung after chronic exposure to silica dust. Of the five proteins selected for further analysis, we found that levels of all proteins were markedly increased in the silica-exposed rat lung, including the proteins for the very low density lipoprotein receptor (VLDLR) and the transmembrane (type I) heparin sulfate proteoglycan called syndecan 2 (SDC2). Because VLDLR and SDC2 have not, to our knowledge, been previously linked to the pathobiology of silicosis, we next examined whether knockdown of either gene altered responses to TGF-ß1 in MRC-5 lung fibroblasts. Interestingly, we found knockdown of either VLDLR or SDC2 dramatically reduced collagen production to TGF-ß1, suggesting that both proteins might play a novel role in myofibroblast biology and pathogenesis of silica-induced pulmonary fibrosis. In summary, our findings suggest that performing LC-MS/MS on TGF-ß1 stimulated lung fibroblasts can uncover novel molecular targets of activated myofibroblasts in silica-exposed lung.
Assuntos
Fibroblastos/metabolismo , Silicose/genética , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptores de LDL/genética , Receptores de LDL/metabolismo , Silicose/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismoRESUMO
Detecting pesticide residues in human serum is a challenging process. In this study we developed and validated a method for the extraction and recovery of residues of multiple classes of pesticides from serum using one reagent. Salt-assisted acetonitrile extraction and high-performance liquid chromatography with quadrupole time of flight tandem mass spectrometry were used to quantitate 34 pesticides classified in nine groups of chemicals in human serum samples, which are frequently detected in food. The recoveries for 33 of analyzed pesticides ranged from 86 to 112% with relative standard deviations below 15%. The limits of quantitation and linearity of 31 of the pesticides were 1 µg/L and >0.990, respectively. The lower limit of quantitation has been reported in the literature particularly for multi-classes pesticide mixtures in human serum. The salt-acetonitrile reagent was allowed to achieve good recoveries and detection limits, which could be attributed to salt altering the solvent polarity, preferentially collecting the organic phase in the solution, and promoting the extraction. The developed method was applied for two organophosphate pesticide metabolites, diethylphosphate and 3,5,6-trichloro-2-pyridinol, in serum from rats that were fed a nonlethal quantity of chlorpyrifos. The concentrations of these two were 252.18 ± 15.47 and 0.63 ± 0.23 µg/L, respectively.