Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(7): 1714-1724.e12, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080063

RESUMO

Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), cause severe and debilitating rheumatic diseases worldwide, resulting in severe morbidity and economic costs. Recently, MXRA8 was reported as an entry receptor. Here, we present the crystal structures of the mouse MXRA8, human MXRA8 in complex with the CHIKV E protein, and the cryo-electron microscopy structure of human MXRA8 and CHIKV virus-like particle. MXRA8 has two Ig-like domains with unique structural topologies. This receptor binds in the "canyon" between two protomers of the E spike on the surface of the virion. The atomic details at the interface between the two binding entities reveal that both the two domains and the hinge region of MXRA8 are involved in interaction with CHIKV E1-E2 residues from two protomers. Notably, the stalk region of MXRA8 is critical for CHIKV virus entry. This finding provides important information regarding the development of therapeutic countermeasures against those arthritogenic alphaviruses.


Assuntos
Vírus Chikungunya/química , Proteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Animais , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/metabolismo
2.
Sci China Life Sci ; 66(1): 152-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184694

RESUMO

The constant emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants indicates the evolution and adaptation of the virus. Enhanced innate immune evasion through increased expression of viral antagonist proteins, including ORF9b, contributes to the improved transmission of the Alpha variant; hence, more attention should be paid to these viral proteins. ORF9b is an accessory protein that suppresses innate immunity via a monomer conformation by binding to Tom70. Here, we solved the dimeric structure of SARS-CoV-2 ORF9b with a long hydrophobic tunnel containing a lipid molecule that is crucial for the dimeric conformation and determined the specific lipid ligands as monoglycerides by conducting a liquid chromatography with tandem mass spectrometry analysis, suggesting an important role in the viral life cycle. Notably, a long intertwined loop accessible for host factor binding was observed in the structure. Eight phosphorylated residues in ORF9b were identified, and residues S50 and S53 were found to contribute to the stabilization of dimeric ORF9b. Additionally, we proposed a model of multifunctional ORF9b with a distinct conformation, suggesting that ORF9b is a fold-switching protein, while both lipids and phosphorylation contribute to the switching. Specifically, the ORF9b monomer interacts with Tom70 to suppress the innate immune response, whereas the ORF9b dimer binds to the membrane involving mature virion assembly. Our results provide a better understanding of the multiple functions of ORF9b.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Lipídeos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Dobramento de Proteína
3.
Vaccine ; 41(17): 2793-2803, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36967286

RESUMO

Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , Adjuvantes de Vacinas , Multimerização Proteica , Anticorpos Antivirais/imunologia , SARS-CoV-2/genética , Mutação , Camundongos Endogâmicos BALB C , Humanos , Animais , Camundongos , Sítios de Ligação , Linhagem Celular
4.
Emerg Microbes Infect ; 12(2): 2231573, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394992

RESUMO

Highly contagious respiratory illnesses like influenza and COVID-19 pose serious risks to public health. A two-in-one vaccine would be ideal to avoid multiple vaccinations for these diseases. Here, we generated a chimeric receptor binding domain of the spike protein (S-RBD) and hemagglutinin (HA)-stalk-based vaccine for both SARS-CoV-2 and influenza viruses. The S-RBD from SARS-CoV-2 Delta was fused to the headless HA from H1N1 (H1Delta), creating a chimera that forms trimers in solution. The cryo-electron microscopy structure of the chimeric protein complexed with the RBD-targeting CB6 and the HA-stalk-targeting CR9114 antibodies shows that the trimeric protein is stable and accessible for neutralizing antibody binding. Immunization with the vaccine elicited high and long-lasting neutralizing antibodies and effectively protected mice against the challenges of lethal H1N1 or heterosubtypic H5N8, as well as the SARS-CoV-2 Delta or Omicron BA.2 variants. Overall, this study offers a two-in-one universal vaccine design to combat infections caused by both SARS-CoV-2 variants of concern and influenza viruses.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Camundongos , Animais , Humanos , Hemaglutininas , Vacinas contra COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Microscopia Crioeletrônica , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra Influenza/genética , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
5.
Emerg Microbes Infect ; 11(1): 1058-1071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35311493

RESUMO

Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 µg or 50 µg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Proteínas de Transporte , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA