RESUMO
Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.
Assuntos
Hormônios Juvenis , Metoprene , Animais , Feminino , Hormônios Juvenis/metabolismo , Ligantes , Metoprene/metabolismo , Insetos/metabolismo , Reprodução , Larva , Peptídeos/farmacologiaRESUMO
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt-/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox-/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox-/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Assuntos
Aedes/genética , Evolução Molecular , Ácidos Graxos Insaturados/metabolismo , Aptidão Genética , Hormônios Juvenis/biossíntese , Aedes/enzimologia , Animais , Feminino , Masculino , Metamorfose Biológica , Reprodução , Sesquiterpenos/metabolismo , Comportamento Sexual AnimalRESUMO
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
Assuntos
Aedes/metabolismo , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Tribolium/metabolismo , Aedes/genética , Animais , Proteínas de Insetos/genética , Hormônios Juvenis/metabolismo , Fosforilação , Receptores de Superfície Celular/genética , Células Sf9 , Spodoptera , Tribolium/genéticaRESUMO
Interplay between apicobasal cell polarity modules and the cytoskeleton is critical for differentiation and integrity of epithelia. However, this coordination is poorly understood at the level of gene regulation by transcription factors. Here, we establish the Drosophila activating transcription factor 3 (atf3) as a cell polarity response gene acting downstream of the membrane-associated Scribble polarity complex. Loss of the tumor suppressors Scribble or Dlg1 induces atf3 expression via aPKC but independent of Jun-N-terminal kinase (JNK) signaling. Strikingly, removal of Atf3 from Dlg1 deficient cells restores polarized cytoarchitecture, levels and distribution of endosomal trafficking machinery, and differentiation. Conversely, excess Atf3 alters microtubule network, vesicular trafficking and the partition of polarity proteins along the apicobasal axis. Genomic and genetic approaches implicate Atf3 as a regulator of cytoskeleton organization and function, and identify Lamin C as one of its bona fide target genes. By affecting structural features and cell morphology, Atf3 functions in a manner distinct from other transcription factors operating downstream of disrupted cell polarity.
Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Fator 3 Ativador da Transcrição/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Imunoprecipitação da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Endossomos/metabolismo , Olho/crescimento & desenvolvimento , Discos Imaginais/citologia , Discos Imaginais/fisiologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Larva , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Motivos de Nucleotídeos/fisiologia , Proteína Quinase C/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
The sesquiterpenoid juvenile hormone (JH) is vital to insect development and reproduction. Intracellular JH receptors have recently been established as basic helix-loop-helix transcription factor (bHLH)/PAS proteins in Drosophila melanogaster known as germ cell-expressed (Gce) and its duplicate paralog, methoprene-tolerant (Met). Upon binding JH, Gce/Met activates its target genes. Insects possess multiple native JH homologs whose molecular activities remain unexplored, and diverse synthetic compounds including insecticides exert JH-like effects. How the JH receptor recognizes its ligands is unknown. To determine which structural features define an active JH receptor agonist, we tested several native JHs and their nonnative geometric and optical isomers for the ability to bind the Drosophila JH receptor Gce, to induce Gce-dependent transcription, and to affect the development of the fly. Our results revealed high ligand stereoselectivity of the receptor. The geometry of the JH skeleton, dictated by two stereogenic double bonds, was the most critical feature followed by the presence of an epoxide moiety at a terminal position. The optical isomerism at carbon C11 proved less important even though Gce preferentially bound a natural JH enantiomer. The results of receptor-ligand-binding and cell-based gene activation assays tightly correlated with the ability of different geometric JH isomers to induce gene expression and morphogenetic effects in the developing insects. Molecular modeling supported the requirement for the proper double-bond geometry of JH, which appears to be its major selective mechanism. The strict stereoselectivity of Gce toward the natural hormone contrasts with the high potency of synthetic Gce agonists of disparate chemistries.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/química , Modelos Moleculares , Ligação Proteica , Receptores de Superfície Celular/metabolismo , EstereoisomerismoRESUMO
Synthetic compounds that mimic the action of juvenile hormones (JHs) are founding members of a class of insecticides called insect growth regulators (IGRs). Like JHs, these juvenoids block metamorphosis of insect larvae to reproductive adults. Many biologically active juvenoids deviate in their chemical structure considerably from the sesquiterpenoid JHs, raising questions about the mode of action of such JH mimics. Despite the early deployment of juvenoid IGRs in the mid-1970s, their molecular effect could not be understood until recent discoveries of JH signaling through an intracellular JH receptor, namely the ligand-binding transcription factor Methoprene-tolerant (Met). Here, we briefly overview evidence defining three widely employed and chemically distinct juvenoid IGRs (methoprene, pyriproxyfen, and fenoxycarb), as agonist ligands of the JH receptor. We stress that knowledge of the target molecule is critical for using these compounds both as insecticides and as research tools.
Assuntos
Hormônios Juvenis/farmacologia , Metamorfose Biológica/efeitos dos fármacos , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Hormônios Juvenis/agonistas , Hormônios Juvenis/química , Ligantes , Metoprene/metabolismo , Metoprene/farmacologia , Fenilcarbamatos/metabolismo , Fenilcarbamatos/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Hormônios Juvenis/metabolismo , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila melanogaster/genética , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Ligação Proteica/fisiologia , Transdução de Sinais/genéticaRESUMO
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.
Assuntos
Proteínas de Drosophila/genética , Precursores de RNA/genética , Splicing de RNA/genética , Esteroides/metabolismo , Animais , Ciclo Celular/genética , Células Cultivadas , Drosophila melanogaster/genética , Ecdisona/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Mutação/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genéticaRESUMO
In temperate regions, the shortening day length informs many insect species to prepare for winter by inducing diapause. The adult diapause of the linden bug, Pyrrhocoris apterus, involves a reproductive arrest accompanied by energy storage, reduction of metabolic needs, and preparation to withstand low temperatures. By contrast, nondiapause animals direct nutrient energy to muscle activity and reproduction. The photoperiod-dependent switch from diapause to reproduction is systemically transmitted throughout the organism by juvenile hormone (JH). Here, we show that, at the organ-autonomous level of the insect gut, the decision between reproduction and diapause relies on an interaction between JH signaling and circadian clock genes acting independently of the daily cycle. The JH receptor Methoprene-tolerant and the circadian proteins Clock and Cycle are all required in the gut to activate the Par domain protein 1 gene during reproduction and to simultaneously suppress a mammalian-type cryptochrome 2 gene that promotes the diapause program. A nonperiodic, organ-autonomous feedback between Par domain protein 1 and Cryptochrome 2 then orchestrates expression of downstream genes that mark the diapause vs. reproductive states of the gut. These results show that hormonal signaling through Methoprene-tolerant and circadian proteins controls gut-specific gene activity that is independent of circadian oscillations but differs between reproductive and diapausing animals.
Assuntos
Relógios Circadianos/fisiologia , Genes de Insetos/fisiologia , Heterópteros/metabolismo , Mucosa Intestinal/metabolismo , Metoprene/metabolismo , Transdução de Sinais/fisiologia , Animais , Criptocromos/biossíntese , Criptocromos/genética , Heterópteros/genética , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Fotoperíodo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
Assuntos
Bombyx/crescimento & desenvolvimento , Heterópteros/crescimento & desenvolvimento , Hormônios Juvenis/metabolismo , Metamorfose Biológica/fisiologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Primers do DNA/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Larva/fisiologia , Metoprene , Interferência de RNA , Especificidade da EspécieRESUMO
Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix-loop-helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met-Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met-Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Modelos Moleculares , Sesquiterpenos/metabolismo , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Dimerização , Proteínas de Drosophila/química , Imunoprecipitação , Ligantes , Metoprene/metabolismo , Dados de Sequência Molecular , Mutação/genética , Piridinas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Transcrição/metabolismoRESUMO
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Assuntos
Insetos/crescimento & desenvolvimento , Insetos/genética , Hormônios Juvenis/genética , Metoprene/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Insetos/metabolismo , Hormônios Juvenis/metabolismo , Metamorfose Biológica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.
Assuntos
Hormônios Juvenis , Animais , Hormônios Juvenis/metabolismo , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/químicaRESUMO
Epithelial sheet spreading and fusion underlie important developmental processes. Well-characterized examples of such epithelial morphogenetic events have been provided by studies in Drosophila, and include embryonic dorsal closure, formation of the adult thorax and wound healing. All of these processes require the basic region-leucine zipper (bZIP) transcription factors Jun and Fos. Much less is known about morphogenesis of the fly abdomen, which involves replacement of larval epidermal cells (LECs) with adult histoblasts that divide, migrate and finally fuse to form the adult epidermis during metamorphosis. Here, we implicate Drosophila Activating transcription factor 3 (Atf3), the single ortholog of human ATF3 and JDP2 bZIP proteins, in abdominal morphogenesis. During the process of the epithelial cell replacement, transcription of the atf3 gene declines. When this downregulation is experimentally prevented, the affected LECs accumulate cell-adhesion proteins and their extrusion and replacement with histoblasts are blocked. The abnormally adhering LECs consequently obstruct the closure of the adult abdominal epithelium. This closure defect can be either mimicked and further enhanced by knockdown of the small GTPase Rho1 or, conversely, alleviated by stimulating ecdysone steroid hormone signaling. Both Rho and ecdysone pathways have been previously identified as effectors of the LEC replacement. To elicit the gain-of-function effect, Atf3 specifically requires its binding partner Jun. Our data thus identify Atf3 as a new functional partner of Drosophila Jun during development.
Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator 3 Ativador da Transcrição/genética , Animais , Proteínas de Drosophila/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imunoprecipitação , Microscopia Confocal , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genéticaRESUMO
Frantisek Sehnal was a prominent and inspiring figure in many areas of insect science, most notably endocrinology, developmental biology, silk research, and recently insect interactions with genetically modified crops. In this article, I will briefly overview Sehnal's research and other academic and educational activities. I would also like to share my personal experience with Frantisek Sehnal as a mentor who drafted, in 1990, a plan for my doctoral thesis: to identify a receptor for juvenile hormone. The project ended up taking more than two decades to complete. While Frantisek has passed away, his legacy stays.
Assuntos
Produtos Agrícolas , Mariposas , Animais , Insetos , Hormônios Juvenis , Mariposas/genética , Plantas Geneticamente Modificadas , História do Século XX , História do Século XXIRESUMO
Juvenile hormone (JH) signalling provides vital regulatory functions during insect development via transcriptional regulation of genes critical for the progression of metamorphosis and oogenesis. Despite the importance of JH signalling, the underlying molecular mechanisms remain largely unknown. Our current understanding of the pathway depends on static end-point information and suffers from the lack of time-resolved data. Here, we have addressed the dynamic aspect of JH signalling by monitoring in real time the interactions of insect JH receptor proteins. Use of two tags that reconstitute a functional luciferase when in proximity enabled us to follow the rapid assembly of a JH receptor heterodimer from basic helix-loop-helix/Per-Arnt-SIM (bHLH-PAS) proteins, methoprene-tolerant (Met) and taiman (Tai), upon specific JH binding to Met. On a similar timescale (minutes), the dissociation of Met-Met complexes occurred, again strictly dependent on Met interaction with specific agonist ligands. To resolve questions regarding the regulatory role of the chaperone Hsp90/83 in the JHR complex formation, we used the same technique to demonstrate that the Met-Hsp83 complex persisted in the agonist absence but readily dissociated upon specific binding of JH to Met. Preincubation with the Hsp90 inhibitor geldanamycin showed that the chaperone interaction protected Met from degradation and was critical for Met to produce the active signalling dimer with Tai. Thus, the JH receptor functions appear to be governed by principles similar to those regulating the aryl hydrocarbon receptor, the closest vertebrate homologue of the arthropod JH receptor.
Assuntos
Hormônios Juvenis , Metoprene , Hormônios Juvenis/metabolismo , Ligantes , Metoprene/farmacologia , Metoprene/metabolismo , Regulação da Expressão Gênica , Chaperonas Moleculares/metabolismoRESUMO
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
RESUMO
beta-Catenin signaling determines the proximal-distal axis of the C. elegans gonad by promoting distal fate in asymmetrically dividing somatic gonad precursor cells (SGPs). Impaired function of the Wnt effector POP-1/TCF, its coactivator SYS-1/beta-catenin, and of upstream components including beta-catenin WRM-1 causes all SGP daughters to adopt the proximal fate. Consequently, no distal tip cells (DTCs) that would lead differentiation of gonad arms form in the affected hermaphrodites. Here, we show that deficiency of the nuclear receptor NHR-25 has the opposite effect: extra DTCs develop instead of proximal cells. NHR-25 knockdown restores DTC formation and fertility in pop-1 and sys-1 mutants, suggesting that a balance between NHR-25 and beta-catenin pathway activities is required to establish both proximal and distal fates. This balance relies on direct crossregulation between NHR-25 and the distinct beta-catenin proteins WRM-1 and SYS-1. The nuclear receptor-beta-catenin interaction may be an ancient mechanism of cell-fate decision.
Assuntos
Caenorhabditis elegans/citologia , Proteínas de Ligação a DNA/fisiologia , Gônadas/citologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , beta Catenina/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Gônadas/metabolismo , Gônadas/fisiologia , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fenótipo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , beta Catenina/genéticaRESUMO
Asymmetric cell divisions produce new cell types during animal development. Studies in Caenorhabditis elegans have identified major signal-transduction pathways that determine the polarity of cell divisions. How these relatively few conserved pathways interact and what modulates them to ensure the diversity of multiple tissue types is an open question. The Wnt/beta-catenin asymmetry pathway governs polarity of the epidermal T seam cell in the C. elegans tail. Here, we show that the asymmetry of T-seam-cell division and morphogenesis of the male sensory rays require NHR-25, an evolutionarily conserved nuclear receptor. NHR-25 ensures the neural fate of the T-seam-cell descendants in cooperation with the Wnt/beta-catenin asymmetry pathway. Loss of NHR-25 enhances the impact of mutated nuclear effectors of this pathway, POP-1 (TCF) and SYS-1 (beta-catenin), on T-seam-cell polarity, whereas it suppresses the effect of the same mutations on asymmetric division of the somatic gonad precursor cells. Therefore, NHR-25 can either synergize with or antagonize the Wnt/beta-catenin asymmetry pathway depending on the tissue context. Our findings define NHR-25 as a versatile modulator of Wnt/beta-catenin-dependent cell-fate decisions.