Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507020

RESUMO

Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.

2.
Biochem Biophys Res Commun ; 653: 106-114, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36868074

RESUMO

Immunotherapy is the new approach for cancer treatment that can be achieved through several strategies, one of which is dendritic cells (DCs) vaccine therapy. However, traditional DC vaccination lacks accurate targeting, so DC vaccine preparation needs to be optimized. Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment can promote tumor immune escape. Therefore, targeting Tregs has become a strategy for tumor immunotherapy. In this study, we found that HMGN1 (N1, a dendritic cell-activating TLR4 agonist) and 3M-052 (a newly synthesized TLR7/8 agonist) synergistically stimulate DCs maturation and increase the production of proinflammatory cytokines TNFα and IL-12. In a colon cancer mice model, vaccination with N1 and 3M-052 stimulated and tumor antigen-loaded DCs combined with anti-TNFR2 inhibited tumor growth in mice, and the antitumor effect was mainly achieved through stimulation of cytotoxic CD8 T cell activation and depletion of Tregs. Overall, the combinating of DC activation by N1 and 3M-052 with inhibition of Tregs by antagonizing TNFR2 as a therapeutic strategy may represent a more effective strategy for cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo , Proteína HMGN1 , Animais , Camundongos , Neoplasias do Colo/patologia , Citocinas , Células Dendríticas , Proteína HMGN1/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Fatores de Transcrição/farmacologia , Microambiente Tumoral
3.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645464

RESUMO

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Neoplasias do Colo , Imidazóis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Macrófagos Associados a Tumor , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Animais , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Macrófagos Associados a Tumor/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Humanos , Distribuição Tecidual , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Tamanho da Partícula , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
4.
Int Immunopharmacol ; 121: 110251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348230

RESUMO

Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Angústia Psicológica , Humanos , Neoplasias Pulmonares/terapia , Imunoterapia , Sistema Nervoso Central , Sistema Imunitário , Microambiente Tumoral
5.
Front Pharmacol ; 14: 1286061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161697

RESUMO

Introduction: As psychoneuroimmunology flourishes, there is compelling evidence that depression suppresses the anti-tumor immune response, promotes the progression of cancer, and inhibits the effectiveness of cancer immunotherapy. Recent studies have reported that antidepressants can not only alleviate the depressant condition of cancer patients, but also strengthen the anti-tumor immunity, thus suppressing tumors. Tumor necrosis factor receptor 2 (TNFR2) antagonistic antibodies (Anti-TNFR2) targeting tumor-infiltrating regulatory T cells (Tregs) has achieved great results in preclinical studies, and with a favorable toxicity profile than existing immunotherapies, and is expected to become a new generation of more effective treatment strategies. Understanding the effects of combination therapy with antidepressants and Anti-TNFR2 may help design new strategies for cancer immunotherapy. Methods: We treated CT26, HCT116, MCA38 and SW620 colon cancer cells with fluoxetine (0-50 µM), ansofaxine hydrochloride (0-50 µM) and amitifadine hydrochloride (0-150 µM) to examine their effects on cell proliferation and apoptosis. We explored the antitumor effects of ansofaxine hydrochloride in combination with or without Anti-TNFR in subcutaneously transplanted CT26 cells in tumor-bearing mouse model. Antitumor effects were evaluated by tumor volume. NK cell, M1 macrophage cell, CD4+ T cell, CD8+ T cell, exhausted CD8+ T and regulatory T cell (Tregs) subtypes were measured by flow cytometry. 5-hydroxytryptamine, dopamine and norepinephrine levels were measured by ELISA. Results: Oral antidepression, ansofaxine hydrochloride, enhanced peripheral dopamine levels, promoted CD8+T cell proliferation, promoted intratumoral infiltration of M1 and NK cells, decreased the proportion of tumor-infiltrating exhausted CD8+T cells, and strengthened anti-tumor immunity, thereby inhibiting colon cancer growth. In combination therapy, oral administration of ansofaxine hydrochloride enhanced the efficacy of Anti-TNFR2, and produced long-term tumor control in with syngeneic colorectal tumor-bearing mice, which was attributable to the reduction in tumor-infiltrating Treg quantity and the recovery of CD8+ T cells function. Discussion: In summary, our data reveal the role of ansofaxine hydrochloride in modulating the anti-tumor immunity. Our results support that exhausted CD8+T is an important potential mechanism by which ansofaxine hydrochloride activates anti-tumor immunity and enhances anti-tumor effects of anti-TNFR2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA