Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408936

RESUMO

Melatonin (MT), as a signaling molecule, plays a vital role in regulating leaf senescence in plants. This study aimed to verify the antioxidant roles of MT in delaying dark- or age-induced leaf senescence of cucumber plants. The results showed that endogenous MT responds to darkness and overexpression of CsASMT, the key gene of MT synthesis, and delays leaf senescence stimulated by darkness, as manifested by significantly lower malonaldehyde (MDA) and reactive oxygen species (ROS) contents as well as higher activities and gene expression of antioxidant enzymes compared to the control. Moreover, MT suppressed both age- or dark-induced leaf senescence of cucumber, as evidenced by a decrease in senescence-related gene SAG20 and cell-death-related gene PDCD expression and ROS content and an increase in antioxidant capacity and chlorophyll biosynthesis compared with the H2O-treated seedlings. Meanwhile, the suppression of age-induced leaf senescence by melatonin was also reflected by the reduction in abscisic acid (ABA) biosynthesis and signaling pathways as well as the promotion of auxin (IAA) biosynthesis and signaling pathways in cucumber plants in the solar greenhouse. Combining the results of the two separate experiments, we demonstrated that MT acts as a powerful antioxidant to alleviate leaf senescence by activating the antioxidant system and IAA synthesis and signaling while inhibiting ABA synthesis and signaling in cucumber plants.


Assuntos
Cucumis sativus , Melatonina , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Melatonina/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Inorg Chem ; 60(17): 13359-13365, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492766

RESUMO

A multidentate tetrazole molecule based on a TPE core, tetrakis[4-(1H-tetrazol-5-yl)phenyl]ethylene (H4ttpe) with combined advantages of two functional groups, was synthesized by cycloaddition reaction of the corresponding organic benzonitrile derivative and azide salt. Coordination self-assembly of the in situ formed aggregation-induced emission polytetrazole luminogen with cadmium(II) ion produces an unprecedented tetrazolyl-TPE-based microporous cationic metal-organic framework (MOF) with an unusual (4,5,8T14)-connected net of {[Cd4(H4ttpe)2Cl5]·(N3)3}, in which the H4ttpe serves as the first undeprotonated tetrazole ligand of octa-coordinating bridging mode. We investigate, for the first time, the utilization of the luminescent MOF containing a TPE core decorated with tetrazolyl terminals for explosive detection based on the change in fluorescence intensity, which shows high selectivity and efficiency in fluorescence quenching toward TNP detection in water solution.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123118, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467590

RESUMO

In order to exploit novel multi-stimuli responsive fluorescent materials, a series of novel fluorescent molecules of salicylic acid derivatives were designed and synthesized via introducing pyrazole or cyclopentane to the salicylic acid scaffold through a special Schiff base-acylhydrazone, and the molecular structures of representative compounds A2 and A4 were verified via single crystal X-ray diffraction. All title molecules could exhibit obvious solvatofluorochromism from cyan to indigo in several solutions with different polarity. The fluorescence titration data exhibited compound A2 and complex A2-Cu2+ with prime detection limits to Cu2+ (0.24 µM) and S2- ions (2.83 µM). The sensitive recognition of A2 to trifluoroacetic (TFA) and A2-TFA to triethylamine (TEA) were also confirmed via fluorescent titration experiments in various solutions, respectively. What's more, the 1H NMR and UV/Vis absorption spectra further explained the mechanism between molecules and ions or molecules and TFA/TEA. Besides, the photoswitching properties of the compounds A2 and A3 could be demonstrated via the irradiation of special wavelength light or heating accompanied with changes in quantum yields. In addition, these phenomena of multiple responses were explained via Density Functional Theory (DFT) based on the Gaussian calculations. Thus, this work provided a preliminary basis for the research of multi-stimuli responsive fluorescent molecules with photoswitching properties.

4.
Front Plant Sci ; 12: 789617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956288

RESUMO

Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 µmol⋅L-1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2 ⋅-) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA