Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(8): 2201-2215, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38492213

RESUMO

Wood formation, which occurs mainly through secondary xylem development, is important not only for supplying raw material for the 'ligno-chemical' industry but also for driving the storage of carbon. However, the complex mechanisms underlying the promotion of xylem formation remain to be elucidated. Here, we found that overexpression of Auxin-Regulated Gene involved in Organ Size (ARGOS) in hybrid poplar 84 K (Populus alba × Populus tremula var. glandulosa) enlarged organ size. In particular, PagARGOS promoted secondary growth of stems with increased xylem formation. To gain further insight into how PagARGOS regulates xylem development, we further carried out yeast two-hybrid screening and identified that the auxin transporter WALLS ARE THIN1 (WAT1) interacts with PagARGOS. Overexpression of PagARGOS up-regulated WAT1, activating a downstream auxin response promoting cambial cell division and xylem differentiation for wood formation. Moreover, overexpressing PagARGOS caused not only higher wood yield but also lower lignin content compared with wild-type controls. PagARGOS is therefore a potential candidate gene for engineering fast-growing and low-lignin trees with improved biomass production.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina , Proteínas de Plantas , Populus , Madeira , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Lignina/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/genética , Madeira/metabolismo , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácidos Indolacéticos/metabolismo
2.
New Phytol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014531

RESUMO

Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.

3.
Biochem Biophys Res Commun ; 663: 163-170, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121126

RESUMO

Plant elicitor peptides (Peps) are recognized by two receptor-like kinases, PEPR1 and PEPR2, and trigger plant immunity responses and root growth inhibition. In this study, we reveal that the Pep-PEPR system triggers root immunity responses in Arabidopsis. Pep1 incubation initiated callose and lignin deposition in roots of wild type but not in that of pepr1 pepr2 mutant seedlings. The plasma membrane-associated kinase BIK1, which serves downstream of the Pep-PEPR signaling pathway, was essential for Pep1-induced root immunity responses. Interestingly, disruption of PEPR1/2-associated coreceptor BAK1 enhanced the deposition of both callose and lignin induced by Pep1 in roots. Ethylene and salicylic acid signaling are involved in Pep1-induced root immunity responses. Furthermore, we showed that the successful phytopathogen, P. syringae (DC3000) could effectively suppress Pep1-trigged root callose and lignin accumulation. These results demonstrated the endogenous Pep-triggered root immunity responses and pathogenic suppression of the Pep-PEPR signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Transdução de Sinais/fisiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo
4.
Ecotoxicol Environ Saf ; 261: 115110, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300917

RESUMO

The natural resistance-associated macrophage protein (NRAMP) gene family plays a key role in essential mineral nutrient homeostasis, as well as toxic metal accumulation, translocation, and detoxification. Although the NRAMP family genes have been widely identified in various species, they still require to be analyzed comprehensively in tree species. In this study, a total of 11 NRAMP members (PtNRAMP1-11) were identified in Populus trichocarpa, a woody model plant, and further subdivided into three groups based on phylogenetic analysis. Chromosomal location analysis indicated that the PtNRAMP genes were unevenly distributed on six of the 19 Populus chromosomes. Gene expression analysis indicated that the PtNRAMP genes were differentially responsive to metal stress, including iron (Fe) and manganese (Mn) deficiency, as well as Fe, Mn, zinc (Zn), and cadmium (Cd) toxicity. Furthermore, the PtNRAMP gene functions were characterized using a heterologous yeast expression system. The results showed that PtNRAMP1, PtNRAMP2, PtNRAMP4, PtNRAMP9, PtNRAMP10, and PtNRAMP11 displayed the ability to transport Cd into yeast cells. In addition, PtNRAMP1, PtNRAMP6, and PtNRAMP7 complemented the Mn uptake mutant, while PtNRAMP1, PtNRAMP6, PtNRAMP7, and PtNRAMP9 complemented the Fe uptake mutant. In conclusion, our findings revealed the respective functions of PtNRAMPs during metal transport as well as their potential role in micronutrient biofortification and phytoremediation.


Assuntos
Proteínas de Transporte de Cátions , Metais Pesados , Populus , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Saccharomyces cerevisiae/metabolismo , Filogenia , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
5.
Plant Cell ; 31(8): 1767-1787, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123046

RESUMO

Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns that are perceived by the receptor-like kinases, PEPR1 and PEPR2, to enhance innate immunity and to inhibit root growth in Arabidopsis (Arabidopsis thaliana). Here, we show that Arabidopsis Pep1 inhibits root growth in a PEPR2-dependent manner, which is accompanied by swelling epidermal and cortex cells and root hair formation in the transition zone (TZ). These Pep1-induced changes were mimicked by exogenous auxin application and were suppressed in the auxin perception mutants transport inhibitor response1 (tir1) and tir1 afb1 afb2 Pep1-induced auxin accumulation in the TZ region preceded cell expansion in roots. Because local auxin distribution depends on PIN-type auxin transporters, we examined Pep1-PEPR-induced root growth inhibition in several pin mutants and found that pin2 was highly sensitive but pin3 was less sensitive to Pep1. The pin2 pin3 double mutant was as sensitive to Pep1 treatment as wild-type plants. Pep1 reduced the abundance of PIN2 in the plasma membrane through activating endocytosis while increasing PIN3 expression in the TZ, leading to changes in local auxin distribution and inhibiting root growth. These results suggest that Pep-PEPR signaling undergoes crosstalk with auxin accumulation to control cell expansion and differentiation in roots during immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555194

RESUMO

The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.


Assuntos
Citoesqueleto de Actina , Citoesqueleto , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Plantas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas do Citoesqueleto/metabolismo
7.
Plant Cell ; 30(5): 1132-1146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29716993

RESUMO

The plant elicitor peptides (Peps), a family of damage/danger-associated molecular patterns (DAMPs), are perceived by two receptors, PEPR1 and PEPR2, and contribute to plant defense against pathogen attack and abiotic stress. Here, we show that the Peps-PEPR signaling pathway functions in stomatal immunity by activating guard cell anion channels in Arabidopsis thaliana The mutant plants lacking both PEPR1 and PEPR2 (pepr1 pepr2) displayed enhanced bacterial growth after being sprayed with Pseudomonas syringae pv tomato (Pst) DC3000, but not after pathogen infiltration into leaves, implicating PEPR function in stomatal immunity. Indeed, synthetic Arabidopsis Peps (AtPeps) effectively induced stomatal closure in wild-type but not pepr1 pepr2 mutant leaves, suggesting that the AtPeps-PEPR signaling pathway triggers stomatal closure. Consistent with this finding, patch-clamp recording revealed AtPep1-induced activation of anion channels in the guard cells of wild-type but not pepr1 pepr2 mutant plants. We further identified two guard cell-expressed anion channels, SLOW ANION CHANNEL1 (SLAC1) and its homolog SLAH3, as functionally overlapping components responsible for AtPep1-induced stomatal closure. The slac1 slah3 double mutant, but not slac1 or slah3 single mutants, failed to respond to AtPep1 in stomatal closure assays. Interestingly, disruption of OPEN STOMATA1 (OST1), an essential gene for abscisic acid-triggered stomatal closure, did not affect the AtPep1-induced anion channel activity and stomatal response. Together, these results illustrate a DAMP-triggered signaling pathway that, unlike the flagellin22-FLAGELLIN-SENSITIVE2 pathway, triggers stomata immunity through an OST1-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502184

RESUMO

The remodeling of root architecture is regarded as a major development to improve the plant's adaptivity to phosphate (Pi)-deficient conditions. The WRKY transcription factors family has been reported to regulate the Pi-deficiency-induced systemic responses by affecting Pi absorption or transportation. Whether these transcription factors act as a regulator to mediate the Pi-deficiency-induced remodeling of root architecture, a typical local response, is still unclear. Here, we identified an Arabidopsis transcription factor, WRKY33, that acted as a negative regulator to mediate the Pi-deficiency-induced remodeling of root architecture. The disruption of WRKY33 in wrky33-2 mutant increased the plant's low Pi sensitivity by further inhibiting the primary root growth and promoting the formation of root hair. Furthermore, we revealed that WRKY33 negatively regulated the remodeling of root architecture by controlling the transcriptional expression of ALMT1 under Pi-deficient conditions, which further mediated the Fe3+ accumulation in root tips to inhibit the root growth. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between WRKY33 and the ALMT1-mediated malate transport system to regulate the Pi deficiency responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Meristema/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Fosfatos/deficiência , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Meristema/genética , Meristema/fisiologia , Transportadores de Ânions Orgânicos/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
9.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830417

RESUMO

As sessile organisms, plants must directly deal with an often complex and adverse environment in which hyperosmotic stress is one of the most serious abiotic factors, challenging cellular physiology and integrity. The plasma membrane (PM) is the hydrophobic barrier between the inside and outside environments of cells and is considered a central compartment in cellular adaptation to diverse stress conditions through dynamic PM remodeling. Endocytosis is a powerful method for rapid remodeling of the PM. In animal cells, different endocytic pathways are activated in response to osmotic stress, while only a few reports are related to the endocytosis response pathway and involve a mechanism in plant cells upon hyperosmotic stress. In this study, using different endocytosis inhibitors, the microdomain-specific dye di-4-ANEPPDHQ, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), and confocal microscopy, we discovered that internalized Clathrin Light Chain-Green Fluorescent Protein (CLC-GFP) increased under hyperosmotic conditions, accompanied by decreased fluorescence intensity of CLC-GFP at the PM. CLC-GFP tended to have higher diffusion coefficients and a fraction of CLC-GFP molecules underwent slower diffusion upon hyperosmotic stress. Meanwhile, an increased motion range of CLC-GFP was found under hyperosmotic treatment compared with the control. In addition, the order of the PM decreased, but the order of the endosome increased when cells were in hyperosmotic conditions. Hence, our results demonstrated that clathrin-mediated endocytosis and membrane microdomain-associated endocytosis both participate in the adaptation to hyperosmotic stress. These findings will help to further understand the role and the regulatory mechanism involved in plant endocytosis in helping plants adapt to osmotic stress.


Assuntos
Arabidopsis/genética , Clatrina/genética , Endocitose/genética , Pressão Osmótica/fisiologia , Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Cadeias Leves de Clatrina/genética , Endossomos/genética , Proteínas de Fluorescência Verde/genética , Microdomínios da Membrana/genética
10.
J Integr Plant Biol ; 63(1): 241-250, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274838

RESUMO

The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.


Assuntos
Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfolipídeos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
11.
PLoS Biol ; 15(12): e2004310, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283991

RESUMO

Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters-Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)-to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
12.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120933

RESUMO

Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are derived from precursor proteins PROPEPs and perceived by a pair of leucine-rich repeat receptor-like kinases (LRR-RLKs), PEPR1 and PEPR2, to enhance innate immunity and to inhibit root growth in Arabidopsis thaliana. In this study, we show that Arabidopsis Pep1 inhibits the root growth by interfering with pH signaling, as acidic condition increased, but neutral and alkaline conditions decreased the Pep1 effect on inhibiting the root growth. The perception of Pep1 to PEPRs activated the plasma membrane-localized H+-ATPases (PM H+-ATPases) -the pump proton in plant cell-to extrude the protons into apoplast, and induced an overly acidic environment in apoplastic space, which further promoted the cell swelling in root apex and inhibited root growth. Furthermore, we revealed that pump proton AUTOINHIBITED H+-ATPase 2 (AHA2) physically interacted with PEPR2 and served downstream of the Pep1-PEPRs signaling pathway to regulate Pep1-induced protons extrusion and root growth inhibition. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between Pep1 and pH signaling to regulate root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transativadores/metabolismo , Alarminas/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605179

RESUMO

Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by a pair of receptor-like kinases, PEPR1 and PEPR2, to enhance innate immunity and induce the growth inhibition of root in Arabidopsis thaliana. In this study, we show that PEPR1 and PEPR2 function vitally in roots to regulate the root immune responses when treating the roots with bacterial pathogen Pst DC3000. PEPR2, rather than PEPR1, played a predominant role in the perception of Pep1 in the roots and further triggered a strong ROS accumulation-the substance acts as an antimicrobial agent or as a secondary messenger in plant cells. Consistently, seedlings mutating two major ROS-generating enzyme genes, respiratory burst oxidase homologs D and F (RBOHD and RBOHF), abolished the root ROS accumulation and impaired the growth inhibition of the roots induced by Pep1. Furthermore, we revealed that botrytis-induced kinase 1 (BIK1) physically interacted with PEPRs and RBOHD/F, respectively, and served downstream of the Pep1-PEPRs signaling pathway to regulate Pep1-induced ROS production and root growth inhibition. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between Pep1 and ROS signaling to regulate root immune response and root growth.


Assuntos
Alarminas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fragmentos de Peptídeos/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Alarminas/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
14.
Plant J ; 90(1): 3-16, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28081290

RESUMO

Arabidopsis hypersensitive-induced reaction (AtHIR) proteins function in plant innate immunity. However, the underlying mechanisms by which AtHIRs participate in plant immunity remain elusive. Here, using VA-TIRFM and FLIM-FRET, we revealed that AtHIR1 is present in membrane microdomains and co-localizes with the membrane microdomain marker REM1.3. Single-particle tracking analysis revealed that membrane microdomains and the cytoskeleton, especially microtubules, restrict the lateral mobility of AtHIR1 at the plasma membrane and facilitate its oligomerization. Furthermore, protein proximity index measurements, fluorescence cross-correlation spectroscopy, and biochemical experiments demonstrated that the formation of the AtHIR1 complex upon pathogen perception requires intact microdomains and cytoskeleton. Taken together, these findings suggest that microdomains and the cytoskeleton constrain AtHIR1 dynamics, promote AtHIR1 oligomerization, and increase the efficiency of the interactions of AtHIR1 with components of the AtHIR1 complex in response to pathogens, thus providing valuable insight into the mechanisms of defense-related responses in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citoesqueleto/genética , Microdomínios da Membrana/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia
15.
Trends Plant Sci ; 29(6): 620-622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38158301

RESUMO

Plant pathogens deliver effector proteins into the plant cell to cause disease. Recently, Nomura et al. discovered that the AvrE family of effectors serve as water channels to release water into the apoplast, causing a phenomenon known as 'water soaking'. A chemical called PAMAM G1 blocks these channels and prevents disease symptoms.


Assuntos
Doenças das Plantas , Doenças das Plantas/microbiologia , Água/metabolismo , Plantas/microbiologia , Plantas/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
16.
Front Plant Sci ; 15: 1336129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425796

RESUMO

Plant Elicitor Peptides (Peps) induce plant immune responses and inhibit root growth through their receptors PEPR1 and PEPR2, two receptor-like kinases. In our study, we found a previously unknown function of Peps that enhance root hair growth in a PEPRs-independent manner. When we characterized the expression patterns of PROPEP genes, we found several gene promoters of PROPEP gene family were particularly active in root hairs. Furthermore, we observed that PROPEP2 is vital for root hair development, as disruption of PROPEP2 gene led to a significant reduction in root hair density and length. We also discovered that PROPEP2 regulates root hair formation via the modulation of CPC and GL2 expression, thereby influencing the cell-fate determination of root hairs. Additionally, calcium signaling appeared to be involved in PROPEP2/Pep2-induced root hair growth. These findings shed light on the function of Peps in root hair development.

17.
Plant Commun ; 5(7): 100929, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38678366

RESUMO

The endoplasmic reticulum (ER) and the plasma membrane (PM) form ER-PM contact sites (EPCSs) that allow the ER and PM to exchange materials and information. Stress-induced disruption of protein folding triggers ER stress, and the cell initiates the unfolded protein response (UPR) to resist the stress. However, whether EPCSs play a role in ER stress in plants remains unclear. VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP)-ASSOCIATED PROTEIN 27-1 (VAP27-1) functions in EPCS tethering and is encoded by a family of 10 genes (VAP27-1-10) in Arabidopsis thaliana. Here, we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4 (vap27-1/3/4) triple mutant lacking three of the key VAP27 family members in Arabidopsis. The vap27-1/3/4 mutant exhibits defects in ER-PM connectivity and EPCS architecture, as well as excessive UPR signaling. We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress. Moreover, the spatiotemporal dynamics of VAP27-1 at the PM increase ER-PM connectivity and enhance Arabidopsis resistance to ER stress. In addition, we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling. Taken together, these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants, providing additional clues for improving plant broad-spectrum resistance to different stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Resposta a Proteínas não Dobradas/genética
18.
Planta ; 238(5): 831-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23900837

RESUMO

γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.


Assuntos
Germinação/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Picea/efeitos dos fármacos , Picea/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Ácido gama-Aminobutírico/farmacologia , Ácido 3-Mercaptopropiônico/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Cálcio/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Fluorescência , Pólen/anatomia & histologia , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/crescimento & desenvolvimento , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Fatores de Tempo
19.
Front Plant Sci ; 14: 1328250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186590

RESUMO

In plants, the regulation of plasma membrane (PM) dynamics through endocytosis plays a crucial role in responding to external environmental cues and defending against pathogens. The Arabidopsis plant elicitor peptides (Peps), originating from precursor proteins called PROPEPs, have been implicated in various aspects of plant immunity. This study delves into the signaling pathway of Peps, particularly Pep1, and its effect on PM protein internalization. Using PIN2 and BRI1 as PM markers, we demonstrated that Pep1 stimulates the endocytosis of these PM-localized proteins through clathrin-mediated endocytosis (CME). CLC2 and CLC3, two light chains of clathrin, are vital for Pep1-induced PIN2-GFP and BRI1-GFP internalization.The internalized PIN2 and BRI1 are subsequently transported to the vacuole via the trans-Golgi network/early endosome (TGN/EE) and prevacuolar compartment (PVC) pathways. Intriguingly, salicylic acid (SA) negatively regulates the effect of Pep1 on PM endocytosis. This study sheds light on a previously unknown signaling pathway by which danger peptides like Pep1 influence PM dynamics, contributing to a deeper understanding of the function of plant elicitor peptide.

20.
Int J Biol Macromol ; 228: 732-743, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563811

RESUMO

Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific zinc finger transcription factors that perform critical functions in plant development and resistance. However, the function of PLATZs in heavy metal tolerance has not yet been investigated. Moreover, only a few PLATZ proteins have been functionally characterized in tree species. In this study, we identified 18 PtPLATZ genes in Populus trichocarpa, an important woody model plant, and classified them into five groups. PtPLATZ genes attributed to the same clade usually possess similar exon-intron structures containing two or three introns, as well as a similar motif composition. Furthermore, chromosomal location analysis indicated an uneven distribution of PtPLATZ genes on 13 of the 19 Populus chromosomes. Promoter cis-acting element prediction and gene expression analysis showed that PtPLATZ genes were highly responsive to heavy metal stress. Heterologous yeast expression revealed that PtPLATZ1, PtPLATZ2, PtPLATZ3, PtPLATZ4, PtPLATZ8 and PtPLATZ9 are significantly involved in Cd tolerance. In addition, transgenic expression of PtPLATZ3 significantly enhanced Cd tolerance and accumulation, slowed the decline in chlorophyll content, maintained membrane integrity in Populus, and increased the expression of genes related to Cd tolerance and accumulation. In conclusion, our results suggest the potential of PtPLATZ3 to improve Cd tolerance and accumulation in Populus, which is of great significance for phytoremediation.


Assuntos
Metais Pesados , Populus , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Biodegradação Ambiental , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Íntrons , Proteínas de Plantas/química , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA