RESUMO
Osthenol is a prenylated coumarin isolated from the root of Angelica koreana and Angelica dahurica, and is an O-demethylated metabolite of osthole in vivo. Its various pharmacological effects have been reported previously. The metabolic pathway of osthenol was partially confirmed in rat osthole studies, and 11 metabolic products were identified in rat urine. However, the metabolic pathway of osthenol in human liver microsomes (HLM) has not been reported. In this study, we elucidated the structure of generated metabolites using a high-resolution quadrupole-orbitrap mass spectrometer (HR-MS/MS) and characterized the major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) isozymes involved in osthenol metabolism in human liver microsomes (HLMs). We identified seven metabolites (M1-M7) in HLMs after incubation in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and uridine 5'-diphosphoglucuronic acid (UDPGA). As a result, we demonstrated that osthenol is metabolized to five mono-hydroxyl metabolites (M1-M5) by CYP2D6, 1A2, and 3A4, respectively, a 7-O-glucuronide conjugate (M6) by UGT1A9, and a hydroxyl-glucuronide (M7) from M5 by UGT1A3 in HLMs. We also found that glucuronidation is the dominant metabolic pathway of osthenol in HLMs.
RESUMO
PF-543 is a non-sphingosine analogue with inhibitory effect against SK1, based on a Ki of 4.3â¯nM and 130-fold selectivity for SK1 over SK2. Since the development of PF-543, animal studies demonstrated its valuable role in multiple sclerosis, myocardial infarction, and colorectal cancer. We synthesized labeled PF-543 for biochemical studies involving SK1. Overall, the 8-step synthetic route used 3,5-dimethylphenol as the starting material. A docking study of SK1 and SK1 inhibitory activity confirmed the structural similarity between the synthetic dansyl-PF-543 and PF-543. We also provide fluorescence spectra of dansyl-PF-543.