Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 18(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512874

RESUMO

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-a (TNF-a) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-a and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-a and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-kB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IkBa and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-kB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Indóis/farmacologia , Fenóis/farmacologia , Protetores Solares/farmacologia , Animais , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Acetato de Tetradecanoilforbol/análogos & derivados , Fator de Necrose Tumoral alfa/metabolismo
2.
Mar Drugs ; 12(11): 5643-56, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25421321

RESUMO

In the present study, we investigated the effect of agelasine D (AD) on osteoclastogenesis. Treatment of bone marrow macrophages (BMMs) with receptor activator of nuclear factor κB ligand (RANKL) resulted in a differentiation of BMMs into osteoclasts as evidenced by generation of tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated cells and formation of pits in calcium phosphate-coated plates. However, RANKL-induced osteoclastogenesis was significantly suppressed by AD treatment. We also confirmed the increased mRNA and protein expression of osteoclastic markers, such as TRAP, cathepsin K and matrix metalloproteinase-9, during RANKL-induced osteoclast differentiation and this was down-regulated by AD treatment. Moreover, AD treatment significantly suppressed RANKL-induced mRNA expression of DC-STAMP and OC-STAMP and cell fusion of TRAP-positive mononuclear osteoclast precursors. In addition, AD suppressed RANKL-induced expression of transcription factors, c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important transcription factors involved in differentiation of BMMs into osteoclasts. Furthermore, RANKL-induced phosphorylation of extracellular signal-related kinase (ERK) and activation of NF-κB were also inhibited by AD treatment. Collectively, these results suggest that AD inhibits RANKL-induced osteoclastogenesis by down-regulation of multiple signaling pathways involving c-Fos, NFATc1, NF-κB and ERK. Our results also suggest that AD might be a potential therapeutic agent for prevention and treatment of osteoporosis.


Assuntos
Fosfatase Ácida/metabolismo , Isoenzimas/metabolismo , Osteoclastos/efeitos dos fármacos , Purinas/farmacologia , Ligante RANK/administração & dosagem , Animais , Células da Medula Óssea/citologia , Regulação para Baixo , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Ligante RANK/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA