Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7994): 259-263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200302

RESUMO

To run large-scale algorithms on a quantum computer, error-correcting codes must be able to perform a fundamental set of operations, called logic gates, while isolating the encoded information from noise1-8. We can complete a universal set of logic gates by producing special resources called magic states9-11. It is therefore important to produce high-fidelity magic states to conduct algorithms while introducing a minimal amount of noise to the computation. Here we propose and implement a scheme to prepare a magic state on a superconducting qubit array using error correction. We find that our scheme produces better magic states than those that can be prepared using the individual qubits of the device. This demonstrates a fundamental principle of fault-tolerant quantum computing12, namely, that we can use error correction to improve the quality of logic gates with noisy qubits. Moreover, we show that the yield of magic states can be increased using adaptive circuits, in which the circuit elements are changed depending on the outcome of mid-circuit measurements. This demonstrates an essential capability needed for many error-correction subroutines. We believe that our prototype will be invaluable in the future as it can reduce the number of physical qubits needed to produce high-fidelity magic states in large-scale quantum-computing architectures.

2.
Phys Rev Lett ; 117(1): 010501, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419549

RESUMO

Quantum error correction and fault tolerance make it possible to perform quantum computations in the presence of imprecision and imperfections of realistic devices. An important question is to find the noise rate at which errors can be arbitrarily suppressed. By concatenating the 7-qubit Steane and 15-qubit Reed-Muller codes, the 105-qubit code enables a universal set of fault-tolerant gates despite not all of them being transversal. Importantly, the cnot gate remains transversal in both codes, and as such has increased error protection relative to the other single qubit logical gates. We show that while the level-1 pseudothreshold for the concatenated scheme is limited by the logical Hadamard gate, the error suppression of the logical cnot gates allows for the asymptotic threshold to increase by orders of magnitude at higher levels. We establish a lower bound of 1.28×10^{-3} for the asymptotic threshold of this code, which is competitive with known concatenated models and does not rely on ancillary magic state preparation for universal computation.

3.
Phys Rev Lett ; 112(1): 010505, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483879

RESUMO

We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.

4.
Phys Rev Lett ; 111(3): 030502, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909301

RESUMO

We investigate the most general notion of a private quantum code, which involves the encoding of qubits into quantum subsystems and subspaces. We contribute to the structure theory for private quantum codes by deriving testable conditions for private quantum subsystems in terms of Kraus operators for channels, establishing an analogue of the Knill-Laflamme conditions in this setting. For a large class of naturally arising quantum channels, we show that private subsystems can exist even in the absence of private subspaces. In doing so, we also discover the first examples of private subsystems that are not complemented by operator quantum error correcting codes, implying that the complementarity of private codes and quantum error correcting codes fails for the general notion of private quantum subsystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA