Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(28): 7254-7259, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941557

RESUMO

Direct delivery of fluid to brain parenchyma is critical in both research and clinical settings. This is usually accomplished through acutely inserted cannulas. This technique, however, results in backflow and significant dispersion away from the infusion site, offering little spatial or temporal control in delivering fluid. We present an implantable, MRI-compatible, remotely controlled drug delivery system for minimally invasive interfacing with brain microstructures in freely moving animals. We show that infusions through acutely inserted needles target a region more than twofold larger than that of identical infusions through chronically implanted probes due to reflux and backflow. We characterize the dynamics of in vivo infusions using positron emission tomography techniques. Volumes as small as 167 nL of copper-64 and fludeoxyglucose labeled agents are quantified. We further demonstrate the importance of precise drug volume dosing to neural structures to elicit behavioral effects reliably. Selective modulation of the substantia nigra, a critical node in basal ganglia circuitry, via muscimol infusion induces behavioral changes in a volume-dependent manner, even when the total dose remains constant. Chronic device viability is confirmed up to 1-y implantation in rats. This technology could potentially enable precise investigation of neurological disease pathology in preclinical models, and more efficacious treatment in human patients.


Assuntos
Gânglios da Base/diagnóstico por imagem , Cobre/farmacologia , Sistemas de Liberação de Medicamentos , Fluordesoxiglucose F18/farmacologia , Imageamento por Ressonância Magnética/métodos , Substância Negra/diagnóstico por imagem , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Ratos
2.
Proc Natl Acad Sci U S A ; 111(5): 1927-32, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449853

RESUMO

Here, we report advanced materials and devices that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales. A cointegrated collection of such energy-harvesting elements with rectifiers and microbatteries provides an entire flexible system, capable of viable integration with the beating heart via medical sutures and operation with efficiencies of ∼2%. Additional experiments, computational models, and results in multilayer configurations capture the key behaviors, illuminate essential design aspects, and offer sufficient power outputs for operation of pacemakers, with or without battery assist.


Assuntos
Diafragma/fisiologia , Fontes de Energia Elétrica , Fenômenos Eletrofisiológicos , Coração/fisiologia , Pulmão/fisiologia , Movimento (Física) , Animais , Bovinos , Humanos , Ratos , Ovinos
3.
Nat Mater ; 14(7): 728-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985458

RESUMO

Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.


Assuntos
Eletrofisiologia/instrumentação , Pele/patologia , Adulto , Idoso , Animais , Fenômenos Biomecânicos , Bovinos , Elasticidade , Eletrofisiologia/métodos , Feminino , Humanos , Queratinócitos/citologia , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanotecnologia/métodos , Estresse Mecânico , Viscosidade
4.
Sci Transl Med ; 10(425)2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367347

RESUMO

Recent advances in medications for neurodegenerative disorders are expanding opportunities for improving the debilitating symptoms suffered by patients. Existing pharmacologic treatments, however, often rely on systemic drug administration, which result in broad drug distribution and consequent increased risk for toxicity. Given that many key neural circuitries have sub-cubic millimeter volumes and cell-specific characteristics, small-volume drug administration into affected brain areas with minimal diffusion and leakage is essential. We report the development of an implantable, remotely controllable, miniaturized neural drug delivery system permitting dynamic adjustment of therapy with pinpoint spatial accuracy. We demonstrate that this device can chemically modulate local neuronal activity in small (rodent) and large (nonhuman primate) animal models, while simultaneously allowing the recording of neural activity to enable feedback control.


Assuntos
Sistemas de Liberação de Medicamentos , Miniaturização , Sistema Nervoso/metabolismo , Anestesia , Animais , Comportamento Animal , Injeções Intraventriculares , Macaca mulatta , Ratos , Vigília
5.
Nat Biomed Eng ; 1(10): 807-817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31015594

RESUMO

Improvements in ingestible electronics with the capacity to sense physiological and pathophysiological states have transformed the standard of care for patients. Yet, despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we report the design and use of an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantify its key behaviours in the gastrointestinal tract using computational modelling and validate its functionality in awake and ambulating swine. Our proof-of-concept device may lead to the development of ingestible piezoelectric devices that might safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for the diagnosis and treatment of motility disorders, as well as for monitoring ingestion in bariatric applications.

6.
Nat Commun ; 5: 4496, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25092496

RESUMO

The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.


Assuntos
Chumbo/química , Monitorização Fisiológica/instrumentação , Pele/patologia , Titânio/química , Zircônio/química , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Calibragem , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Elastômeros , Eletroquímica/métodos , Eletrodos , Desenho de Equipamento , Humanos , Teste de Materiais , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Monitorização Fisiológica/métodos , Nanotecnologia/tendências , Semicondutores , Razão Sinal-Ruído , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA