Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Annu Rev Microbiol ; 76: 305-323, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075094

RESUMO

Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.


Assuntos
Neurospora , Schizosaccharomyces , Genes Fúngicos , Meiose , Neurospora/genética , Schizosaccharomyces/genética , Esporos Fúngicos/genética
2.
Proc Natl Acad Sci U S A ; 119(46): e2208575119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343254

RESUMO

Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.


Assuntos
Agaricales , Basidiomycota , Marasmius , Humanos , Animais , Basidiomycota/genética , Agaricales/genética , Estágios do Ciclo de Vida
3.
Genome Res ; 31(5): 789-798, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33875482

RESUMO

The genomes of eukaryotes are full of parasitic sequences known as transposable elements (TEs). Here, we report the discovery of a putative giant tyrosine-recombinase-mobilized DNA transposon, Enterprise, from the model fungus Podospora anserina Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. anserina, despite what is an otherwise highly conserved genome structure. We propose that the reason for its varying positions is that the Spok block is not only capable of meiotic drive but is also capable of transposition. More precisely, the Spok block represents a unique case where the Enterprise has captured the Spoks, thereby parasitizing a resident genomic parasite to become a genomic hyperparasite. Furthermore, we demonstrate that Enterprise (without the Spoks) is found in other fungal lineages, where it can be as large as 70 kb. Lastly, we provide experimental evidence that the Spok block is deleterious, with detrimental effects on spore production in strains which carry it. This union of meiotic drivers and a transposon has created a selfish element of impressive size in Podospora, challenging our perception of how TEs influence genome evolution and broadening the horizons in terms of what the upper limit of transposition may be.


Assuntos
Podospora , Elementos de DNA Transponíveis/genética , Humanos , Podospora/genética
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875604

RESUMO

Meiotic drive elements cause their own preferential transmission following meiosis. In fungi, this phenomenon takes the shape of spore killing, and in the filamentous ascomycete Neurospora sitophila, the Sk-1 spore killer element is found in many natural populations. In this study, we identify the gene responsible for spore killing in Sk-1 by generating both long- and short-read genomic data and by using these data to perform a genome-wide association test. We name this gene Spk-1 Through molecular dissection, we show that a single 405-nt-long open reading frame generates a product that both acts as a poison capable of killing sibling spores and as an antidote that rescues spores that produce it. By phylogenetic analysis, we demonstrate that the gene has likely been introgressed from the closely related species Neurospora hispaniola, and we identify three subclades of N. sitophila, one where Sk-1 is fixed, another where Sk-1 is absent, and a third where both killer and sensitive strain are found. Finally, we show that spore killing can be suppressed through an RNA interference-based genome defense pathway known as meiotic silencing by unpaired DNA. Spk-1 is not related to other known meiotic drive genes, and similar sequences are only found within Neurospora These results shed light on the diversity of genes capable of causing meiotic drive, their origin and evolution, and their interaction with the host genome.


Assuntos
Introgressão Genética , Neurospora/genética , Interferência de RNA , Sequências Repetitivas de Ácido Nucleico , Cromossomos Fúngicos
5.
Mol Phylogenet Evol ; 189: 107938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820761

RESUMO

The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.


Assuntos
Genômica , Sordariales , Humanos , Filogenia , Genômica/métodos , Genoma , Sordariales/genética , Sequência de Bases , Evolução Molecular
6.
J Evol Biol ; 36(1): 238-250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263943

RESUMO

Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.


Assuntos
Podospora , Humanos , Podospora/genética , Reprodução/genética , Fungos , Fertilidade
7.
Mol Biol Evol ; 38(6): 2475-2492, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33555341

RESUMO

Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.


Assuntos
Evolução Biológica , Cromossomos Fúngicos , Genes Fúngicos Tipo Acasalamento , Podospora/genética , Recombinação Genética , Conversão Gênica , Heterozigoto , Autofertilização
8.
Proc Biol Sci ; 289(1980): 20220971, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946150

RESUMO

Heterokaryosis is a system in which genetically distinct nuclei coexist within the same cytoplasm. While heterokaryosis dominates the life cycle of many fungal species, the transcriptomic changes associated with the transition from homokaryosis to heterokaryosis is not well understood. Here, we analyse gene expression profiles of homokaryons and heterokaryons from three phylogenetically and reproductively isolated lineages of the filamentous ascomycete Neurospora tetrasperma. We show that heterokaryons are transcriptionally distinct from homokaryons in the sexual stage of development, but not in the vegetative stage, suggesting that the phenotypic switch to fertility in heterokaryons is associated with major changes in gene expression. Heterokaryon expression is predominantly defined by additive effects of its two nuclear components. Furthermore, allele-specific expression analysis of heterokaryons with varying nuclear ratios show patterns of expression ratios strongly dependent on nuclear ratios in the vegetative stage. By contrast, in the sexual stage, strong deviations of expression ratios indicate a co-regulation of nuclear gene expression in all three lineages. Taken together, our results show two levels of expression control: additive effects suggest a nuclear level of expression, whereas co-regulation of gene expression indicate a heterokaryon level of control.


Assuntos
Neurospora , Alelos , Núcleo Celular/genética , Expressão Gênica , Neurospora/genética
9.
Bioinformatics ; 37(15): 2203-2205, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216122

RESUMO

SUMMARY: Linked genomic sequencing reads contain information that can be used to join sequences together into scaffolds in draft genome assemblies. Existing software for this purpose performs the scaffolding by joining sequences with a gap between them, not considering potential overlaps of contigs. We developed ARBitR to create scaffolds where overlaps are taken into account and show that it can accurately recreate regions where draft assemblies are broken. AVAILABILITY AND IMPLEMENTATION: ARBitR is written and implemented in Python3 for Unix-based operative systems. All source code is available at https://github.com/markhilt/ARBitR under the GNU General Public License v3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma , Genômica , Análise de Sequência de DNA
10.
Genome Res ; 26(4): 486-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26893460

RESUMO

Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes.We found that suppressed recombination extends across at least 6 Mbp (∼ 63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions.


Assuntos
Cromossomos Fúngicos , Genes Fúngicos Tipo Acasalamento , Neurospora/genética , Recombinação Genética , Alelos , Evolução Molecular , Ligação Genética , Variação Genética , Genoma Fúngico , Desequilíbrio de Ligação , Neurospora/classificação , Filogenia
11.
Environ Microbiol ; 20(5): 1641-1650, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29441658

RESUMO

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Carpóforos/fisiologia , Variação Genética , Microbiota , Microbiologia do Solo
12.
Genome Res ; 25(1): 100-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342722

RESUMO

We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78-6.89 × 10(-13) intron gains per nucleotide site per year) and a high intron loss rate (7.53-13.76 × 10(-10) intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5' intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.


Assuntos
Evolução Molecular , Genoma Fúngico , Íntrons , Neurospora/genética , Seleção Genética , Reparo do DNA por Junção de Extremidades , DNA Fúngico/genética , DNA Mitocondrial/genética , Frequência do Gene , Genética Populacional , Mutação , Neurospora/classificação , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Análise de Sequência de DNA
13.
PLoS Genet ; 8(7): e1002820, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844246

RESUMO

The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes.


Assuntos
Cromossomos Fúngicos/genética , Fungos , Genes Fúngicos Tipo Acasalamento , Hibridização Genética/genética , Neurospora , Alelos , Evolução Molecular , Fungos/genética , Genoma Fúngico , Haploidia , Neurospora/genética , Filogenia , Recombinação Genética
14.
Mol Biol Evol ; 30(11): 2435-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966547

RESUMO

Differential gene expression is believed to largely explain sexually dichotomous phenotypes. This phenomenon is especially significant in hermaphrodites, in which male and female sexual tissues have identical genotypes. Sex differences in transcription have been linked to molecular evolution: genes with higher expression in male compared with female sexual tissues (i.e., male-biased genes) have been associated with rapid gene divergence in various animals and plants, implying that selective differences exist among the sexual structures. In the present investigation, we examined expressed sequence tags, microarrays, and gene sequence data from the hermaphroditic fungus Neurospora crassa and confirmed selective differences of genes with disparate expression among male versus female sexual structures in this organism. The results held across various genotypes and stages of sexual development. Furthermore, our data showed that N. crassa comprises a rare example of an organism where female-biased genes evolve rapidly; they exhibited faster evolution at the protein level and reduced optimal codon usage compared with male-biased genes, sexually unbiased genes, and vegetative genes. Female-biased genes also had a greater portion of sites that experienced positive selection and showed stronger signals of selective sweeps than male-biased genes, suggesting that the rapid evolution is at least partly driven by adaptive evolution. Distinctive aspects of the reproductive biology of N. crassa which might explain the rapid evolution of female-biased genes are discussed, particularly the propensity for female-female competition during mating, as well as the multifunctional nature of male structures. The present findings open new opportunities to test hypotheses about sex-biased gene expression and molecular evolution.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Organismos Hermafroditas/genética , Neurospora crassa/genética , Códon , Evolução Molecular , Etiquetas de Sequências Expressas , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Neurospora crassa/classificação , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Seleção Genética
15.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850920

RESUMO

A heterokaryon is a tissue type composed of cells containing genetically different nuclei. Although heterokaryosis is commonly found in nature, an understanding of the evolutionary implications of this phenomenon is largely lacking. Here, we use the filamentous ascomycete Neurospora tetrasperma to study the interplay between nuclei in heterokaryons across vegetative and sexual developmental stages. This fungus harbours nuclei of two opposite mating types (mat A and mat a) in the same cell and is thereby self-fertile. We used pyrosequencing of mat-linked SNPs of three heterokaryons to demonstrate that the nuclear ratio is consistently biased for mat A-nuclei during mycelial growth (mean mat A/mat a ratio 87%), but evens out during sexual development (ratio ranging from 40 to 57%). Furthermore, we investigated the association between nuclear ratio and expression of alleles of mat-linked genes and found that expression is coregulated to obtain a tissue-specific bias in expression ratio: during mycelial extension, we found a strong bias in expression for mat A-linked genes, that was independent of nuclear ratio, whereas at the sexual stage we found an expression bias for genes of the mat a nuclei. Taken together, our data indicate that nuclei cooperate to optimize the fitness of the heterokaryon, via both altering their nuclear ratios and coregulation genes expressed in the different nuclei.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Neurospora/genética , Evolução Biológica , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/metabolismo , Neurospora/metabolismo , Reação em Cadeia da Polimerase
16.
Mol Phylogenet Evol ; 78: 136-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24845789

RESUMO

The large diversity of mating systems observed in the fungal kingdom underlines the importance of mating system change in fungal evolution. The selfing species Neurospora tetrasperma has evolved a novel method of achieving self-fertility by a mating system referred to as pseudohomothallism. However, little is known about the origin of N. tetrasperma and its relationship to the self-sterile, heterothallic, Neurospora species. In this study, we used a combination of phylogenetic and population genetic analyses to reconstruct the evolutionary history of N. tetrasperma and its heterothallic relatives. We sequenced 9 unlinked nuclear loci from 106 strains of N. tetrasperma sampled from across the globe, and a sample of 28 heterothallic strains of Neurospora. Our analyses provide strong support for monophyly of N. tetrasperma, but reject the monophyly of N. crassa. We estimate that N. tetrasperma is of a recent origin and that it diverged from the heterothallic species ∼1 million years ago. We also extend previous findings on the diversification within the N. tetrasperma clade, with 10 lineages identified. Taken together, these findings indicate that N. tetrasperma is younger than has been previously reported and that a rapid diversification of lineages has occurred within the N. tetrasperma clade.


Assuntos
Neurospora/classificação , Neurospora/genética , Variação Genética , Filogenia , Análise de Sequência de DNA
17.
Bioessays ; 34(11): 934-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22968834

RESUMO

The fungus Neurospora comprises a novel model for testing hypotheses involving the role of sex and reproduction in eukaryotic genome evolution. Its variation in reproductive mode, lack of sex-specific genotypes, availability of phylogenetic species, and young sex-regulating chromosomes make research in this genus complementary to animal and plant models.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Modelos Genéticos , Neurospora/genética , Cromossomos Fúngicos/genética , Reprodução/genética
18.
Nat Commun ; 15(1): 2122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459017

RESUMO

Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.


Assuntos
Deriva Genética , Especiação Genética , Fluxo Gênico , Genoma , Filogenia
19.
Mob DNA ; 15(1): 1, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218923

RESUMO

BACKGROUND: The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS: We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS: Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.

20.
Genome Biol Evol ; 16(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38386982

RESUMO

The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.


Assuntos
Podospora , Podospora/genética , Filogenia , Reprodução , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA