Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318177

RESUMO

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Assuntos
Glaucoma/metabolismo , Glucose/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ácido Pirúvico/metabolismo , Sirolimo/farmacologia , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Pressão Intraocular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo
2.
Annu Rev Neurosci ; 35: 153-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22524788

RESUMO

Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.


Assuntos
Axônios/patologia , Glaucoma/patologia , Degeneração Neural/patologia , Disco Óptico/patologia , Animais , Axônios/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Inflamação/fisiopatologia , Pressão Intraocular/fisiologia , Células Ganglionares da Retina/patologia , Transdução de Sinais/fisiologia , Degeneração Walleriana/patologia
3.
J Neuroinflammation ; 17(1): 336, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176797

RESUMO

BACKGROUND: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.


Assuntos
Degeneração Neural/metabolismo , Nervo Óptico/metabolismo , Receptores de Complemento/biossíntese , Receptores de Complemento/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Redes Reguladoras de Genes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Nervo Óptico/patologia , Receptores de Complemento/genética
4.
Proc Natl Acad Sci U S A ; 114(19): E3839-E3848, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28446616

RESUMO

Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.


Assuntos
Complemento C3/imunologia , Glaucoma/imunologia , Células Ganglionares da Retina/imunologia , Regulação para Cima/imunologia , Animais , Complemento C3/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Glaucoma/genética , Glaucoma/patologia , Glaucoma/prevenção & controle , Pressão Intraocular/imunologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Nervo Óptico/imunologia , Nervo Óptico/patologia , Quinazolinas/farmacologia , Células Ganglionares da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Tirfostinas/farmacologia
5.
Development ; 143(2): 356-66, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26681494

RESUMO

The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1(glcr11), which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1(null) and Crim1(cko), we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active ß1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Cristalino/citologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Organogênese/genética , Organogênese/fisiologia , Fosforilação , Transdução de Sinais/fisiologia
6.
J Neuroinflammation ; 14(1): 93, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446179

RESUMO

BACKGROUND: We previously reported a profound long-term neuroprotection subsequent to a single radiation-therapy in the DBA/2J mouse model of glaucoma. This neuroprotection prevents entry of monocyte-like immune cells into the optic nerve head during glaucoma. Gene expression studies in radiation-treated mice implicated Glycam1 in this protection. Glycam1 encodes a proteoglycan ligand for L-selectin and is an excellent candidate to modulate immune cell entry into the eye. Here, we experimentally test the hypothesis that radiation-induced over-expression of Glycam1 is a key component of the neuroprotection. METHODS: We generated a null allele of Glycam1 on a DBA/2J background. Gene and protein expression of Glycam1, monocyte entry into the optic nerve head, retinal ganglion cell death, and axon loss in the optic nerve were assessed. RESULTS: Radiation therapy potently inhibits monocyte entry into the optic nerve head and prevents retinal ganglion cell death and axon loss. DBA/2J mice carrying a null allele of Glycam1 show increased monocyte entry and increased retinal ganglion cell death and axon loss following radiation therapy, but the majority of optic nerves were still protected by radiation therapy. CONCLUSIONS: Although GlyCAM1 is an L-selectin ligand, its roles in immunity are not yet fully defined. The current study demonstrates a partial role for GlyCAM1 in radiation-mediated protection. Furthermore, our results clearly show that GlyCAM1 levels modulate immune cell entry from the vasculature into neural tissues. As Glycam1 deficiency has a more profound effect on cell entry than on neurodegeneration, further experiments are needed to precisely define the role of monocyte entry in DBA/2J glaucoma. Nevertheless, GlyCAM1's function as a negative regulator of extravasation may lead to novel therapeutic strategies for an array of common conditions involving inflammation.


Assuntos
Glaucoma/metabolismo , Glaucoma/radioterapia , Monócitos/metabolismo , Mucinas/biossíntese , Mucinas/efeitos da radiação , Disco Óptico/metabolismo , Animais , Feminino , Glaucoma/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Disco Óptico/irrigação sanguínea , Nervo Óptico/irrigação sanguínea , Nervo Óptico/metabolismo
7.
PLoS Biol ; 12(7): e1001912, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25051267

RESUMO

Schlemm's canal (SC) plays central roles in ocular physiology. These roles depend on the molecular phenotypes of SC endothelial cells (SECs). Both the specific phenotype of SECs and development of SC remain poorly defined. To allow a modern and extensive analysis of SC and its origins, we developed a new whole-mount procedure to visualize its development in the context of surrounding tissues. We then applied genetic lineage tracing, specific-fluorescent reporter genes, immunofluorescence, high-resolution confocal microscopy, and three-dimensional (3D) rendering to study SC. Using these techniques, we show that SECs have a unique phenotype that is a blend of both blood and lymphatic endothelial cell phenotypes. By analyzing whole mounts of postnatal mouse eyes progressively to adulthood, we show that SC develops from blood vessels through a newly discovered process that we name "canalogenesis." Functional inhibition of KDR (VEGFR2), a critical receptor in initiating angiogenesis, shows that this receptor is required during canalogenesis. Unlike angiogenesis and similar to stages of vasculogenesis, during canalogenesis tip cells divide and form branched chains prior to vessel formation. Differing from both angiogenesis and vasculogenesis, during canalogenesis SECs express Prox1, a master regulator of lymphangiogenesis and lymphatic phenotypes. Thus, SC development resembles a blend of vascular developmental programs. These advances define SC as a unique vessel with a combination of blood vascular and lymphatic phenotypes. They are important for dissecting its functions that are essential for ocular health and normal vision.


Assuntos
Segmento Anterior do Olho/anatomia & histologia , Animais , Segmento Anterior do Olho/crescimento & desenvolvimento , Linhagem da Célula , Células Endoteliais/fisiologia , Olho/irrigação sanguínea , Proteínas de Homeodomínio/biossíntese , Limbo da Córnea/irrigação sanguínea , Linfangiogênese , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Morfogênese , Fenótipo , Proteínas Supressoras de Tumor/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
8.
Circ Res ; 116(10): 1649-54, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25737499

RESUMO

RATIONALE: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. OBJECTIVE: We aimed to clarify the origin of the murine dermal lymphatic vasculature. METHODS AND RESULTS: We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. CONCLUSIONS: Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.


Assuntos
Linhagem da Célula , Células Endoteliais/citologia , Células Progenitoras Endoteliais/citologia , Endotélio Linfático/citologia , Linfangiogênese , Pele/irrigação sanguínea , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Genes Reporter , Idade Gestacional , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor TIE-2/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/citologia , Veias/metabolismo
9.
PLoS Genet ; 10(5): e1004359, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809698

RESUMO

Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1), resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice.


Assuntos
Genes Dominantes , Genes Letais , Glaucoma/genética , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Alelos , Animais , Padronização Corporal , Dimerização , Heterozigoto , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto
10.
J Cell Sci ; 127(Pt 5): 1138-49, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413176

RESUMO

ATP8A2 is a P4-ATPase that is highly expressed in the retina, brain, spinal cord and testes. In the retina, ATP8A2 is localized in photoreceptors where it uses ATP to transport phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the exoplasmic to the cytoplasmic leaflet of membranes. Although mutations in ATP8A2 have been reported to cause mental retardation in humans and degeneration of spinal motor neurons in mice, the role of ATP8A2 in sensory systems has not been investigated. We have analyzed the retina and cochlea of ATP8A2-deficient mice to determine the role of ATP8A2 in visual and auditory systems. ATP8A2-deficient mice have shortened photoreceptor outer segments, a reduction in photoresponses and decreased photoreceptor viability. The ultrastructure and phagocytosis of the photoreceptor outer segment appeared normal, but the PS and PE compositions were altered and the rhodopsin content was decreased. The auditory brainstem response threshold was significantly higher and degeneration of spiral ganglion cells was apparent. Our studies indicate that ATP8A2 plays a crucial role in photoreceptor and spiral ganglion cell function and survival by maintaining phospholipid composition and contributing to vesicle trafficking.


Assuntos
Adenosina Trifosfatases/fisiologia , Audição , Proteínas de Transferência de Fosfolipídeos/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Gânglio Espiral da Cóclea/citologia , Visão Ocular , Animais , Sobrevivência Celular , Potenciais Evocados Auditivos do Tronco Encefálico , Complexo de Golgi/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Opsinas/metabolismo , Células PC12 , Fagocitose , Fosfolipídeos/metabolismo , Transporte Proteico , Ratos , Rodopsina/metabolismo , Vesículas Transportadoras/metabolismo
11.
Exp Eye Res ; 141: 42-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116903

RESUMO

While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.


Assuntos
Glaucoma/genética , Pressão Intraocular , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
12.
PLoS Genet ; 8(8): e1002853, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912588

RESUMO

Neuronal loss and axonal degeneration are important pathological features of many neurodegenerative diseases. The molecular mechanisms underlying the majority of axonal degeneration conditions remain unknown. To better understand axonal degeneration, we studied a mouse mutant wabbler-lethal (wl). Wabbler-lethal (wl) mutant mice develop progressive ataxia with pronounced neurodegeneration in the central and peripheral nervous system. Previous studies have led to a debate as to whether myelinopathy or axonopathy is the primary cause of neurodegeneration observed in wl mice. Here we provide clear evidence that wabbler-lethal mutants develop an axonopathy, and that this axonopathy is modulated by Wld(s) and Bax mutations. In addition, we have identified the gene harboring the disease-causing mutations as Atp8a2. We studied three wl alleles and found that all result from mutations in the Atp8a2 gene. Our analysis shows that ATP8A2 possesses phosphatidylserine translocase activity and is involved in localization of phosphatidylserine to the inner leaflet of the plasma membrane. Atp8a2 is widely expressed in the brain, spinal cord, and retina. We assessed two of the mutant alleles of Atp8a2 and found they are both nonfunctional for the phosphatidylserine translocase activity. Thus, our data demonstrate for the first time that mutation of a mammalian phosphatidylserine translocase causes axon degeneration and neurodegenerative disease.


Assuntos
Adenosina Trifosfatases/genética , Axônios/enzimologia , Doenças Neurodegenerativas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Degeneração Walleriana/genética , Adenosina Trifosfatases/metabolismo , Alelos , Animais , Axônios/patologia , Sequência de Bases , Encéfalo/enzimologia , Encéfalo/patologia , Genótipo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Fenótipo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Retina/enzimologia , Retina/patologia , Medula Espinal/enzimologia , Medula Espinal/patologia , Degeneração Walleriana/enzimologia , Degeneração Walleriana/patologia
13.
Neurobiol Dis ; 69: 108-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878510

RESUMO

Injury to retinal ganglion cell (RGC) axons triggers rapid activation of Jun N-terminal kinase (JNK) signaling, a major prodeath pathway in injured RGCs. Of the multiple kinases that can activate JNK, dual leucine kinase (Dlk) is known to regulate both apoptosis and Wallerian degeneration triggered by axonal insult. Here we tested the importance of Dlk in regulating somal and axonal degeneration of RGCs following axonal injury. Removal of DLK from the developing optic cup did not grossly affect developmental RGC death or inner plexiform layer organization. In the adult, Dlk deficiency significantly delayed axonal-injury induced RGC death. The activation of JUN was also attenuated in Dlk deficient retinas. Dlk deficiency attenuated the activation of the somal pool of JNK but did not prevent activation of the axonal pool of JNK after axonal injury, indicating that JNK activation in different cellular compartments of an RGC following axonal injury is regulated by distinct upstream kinases. In contrast to its robust influence on somal degeneration, Dlk deficiency did not alter RGC axonal degeneration after axonal injury as assessed using physiological readouts of optic nerve function.


Assuntos
Axônios/enzimologia , MAP Quinase Quinase Quinases/deficiência , Traumatismos do Nervo Óptico/enzimologia , Células Ganglionares da Retina/enzimologia , Degeneração Walleriana/enzimologia , Animais , Axônios/patologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos Transgênicos , Traumatismos do Nervo Óptico/patologia , Fosforilação/fisiologia , Retina/enzimologia , Retina/crescimento & desenvolvimento , Retina/patologia , Células Ganglionares da Retina/patologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Degeneração Walleriana/patologia
14.
Neurobiol Dis ; 71: 44-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132557

RESUMO

The endothelin system is implicated in various human and animal glaucomas. Targeting the endothelin system has great promise as a treatment for human glaucoma, but the cell types involved and the exact mechanisms of action are not clearly elucidated. Here, we report a detailed characterization of the endothelin system in specific cell types of the optic nerve head (ONH) during glaucoma in DBA/2J mice. First, we show that key components of the endothelin system are expressed in multiple cell types. We discover that endothelin 2 (EDN2) is expressed in astrocytes as well as microglia/monocytes in the ONH. The endothelin receptor type A (Ednra) is expressed in vascular endothelial cells, while the endothelin receptor type B (Ednrb) receptor is expressed in ONH astrocytes. Second, we show that Macitentan treatment protects from glaucoma. Macitentan is a novel, orally administered, dual endothelin receptor antagonist with greater affinity, efficacy and safety than previous antagonists. Finally, we test the combinatorial effect of targeting both the endothelin and complement systems as a treatment for glaucoma. Similar to endothelin, the complement system is implicated in a variety of human and animal glaucomas, and has great promise as a treatment target. We discovered that combined targeting of the endothelin (Bosentan) and complement (C1qa mutation) systems is profoundly protective. Remarkably, 80% of DBA/2J eyes subjected to this combined inhibition developed no detectable glaucoma. This opens an exciting new avenue for neuroprotection in glaucoma.


Assuntos
Complemento C1q/metabolismo , Endotelina-2/metabolismo , Glaucoma/complicações , Degeneração Neural/etiologia , Degeneração Neural/terapia , Receptor de Endotelina A/metabolismo , Animais , Astrócitos/metabolismo , Bosentana , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A/uso terapêutico , Glaucoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Pirimidinas/uso terapêutico , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico
15.
BMC Genet ; 15: 42, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678736

RESUMO

BACKGROUND: The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1(b) and Gpnmb(R150X)) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP. RESULTS: We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-Gpnmb(R150X) Tyrp1(b) strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of Gpnmb(R150X) Tyrp1(b) mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage. CONCLUSION: Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression.


Assuntos
Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/imunologia , Doenças da Íris/imunologia , Células Matadoras Naturais/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Feminino , Pressão Intraocular , Doenças da Íris/genética , Masculino , Camundongos Congênicos , Camundongos Endogâmicos DBA , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Nervo Óptico/patologia
16.
PLoS Genet ; 7(2): e1001310, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379331

RESUMO

The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals--but not all--develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.


Assuntos
Olho/patologia , Glaucoma/complicações , Glaucoma/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação/genética , Miopia/complicações , Miopia/genética , Proteínas de Peixe-Zebra/genética , Envelhecimento/patologia , Sequência de Aminoácidos , Animais , Apoptose , Axônios/patologia , Sequência de Bases , Contagem de Células , Proliferação de Células , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Hidroftalmia/complicações , Pressão Intraocular , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Dados de Sequência Molecular , Miopia/fisiopatologia , Disco Óptico/patologia , Disco Óptico/ultraestrutura , Tamanho do Órgão , Fenótipo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fatores de Risco , Estresse Fisiológico/genética , Regulação para Cima , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química
17.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895321

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.

18.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39091756

RESUMO

Purpose: Aqueous humor inflow rate, a key parameter influencing aqueous humor dynamics, is typically measured by fluorophotometery. Analyzing fluorophotometric data depends, inter alia, on the volume of aqueous humor in the anterior, but not the posterior, chamber. Previous fluorophotometric studies of aqueous inflow rate in mice have assumed the ratio of anterior:posterior volumes in mice to be similar to those in humans. Our goal was to measure anterior and posterior chamber volumes in mice to facilitate better estimates of aqueous inflow rates. Methods: We used standard near-infrared optical coherence tomography (OCT) and robotic visible-light OCT (vis-OCT) to visualize, reconstruct and quantify the volumes of the anterior and posterior chambers of the mouse eye in vivo. We used histology and micro-CT scans to validate relevant landmarks from ex vivo tissues to facilitate in vivo measurement. Results: Posterior chamber volume is 1.1 times the anterior chamber volume in BALB/cAnNCrl mice, i.e. the anterior chamber constitutes about 47% of the total aqueous humor volume, which is very dissimilar to the situation in humans. Anterior chamber volumes in 2-month-old BALB/cAnNCrl and 7-month-old C57BL6/J mice were 1.55 ± 0.36 µL (n=10) and 2.41 ± 0.29 µL (n=8), respectively. This implies that previous studies likely over-estimated aqueous inflow rate by approximately two-fold. Conclusions: It is necessary to reassess previously reported estimates of aqueous inflow rates, and thus aqueous humor dynamics in the mouse. For example, we now estimate that only 0-15% of aqueous humor drains via the pressure-independent (unconventional) route, similar to that seen in humans and monkeys.

19.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37886472

RESUMO

Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize 3 molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.

20.
J Neuroinflammation ; 10: 76, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23806181

RESUMO

BACKGROUND: Glaucoma is an age-related neurodegenerative disorder involving the loss of retinal ganglion cells (RGCs), which results in blindness. Studies in animal models have shown that activation of inflammatory processes occurs early in the disease. In particular, the complement cascade is activated very early in DBA/2J mice, a widely used mouse model of glaucoma. A comprehensive analysis of the role of the complement cascade in DBA/2J glaucoma has not been possible because DBA/2J mice are naturally deficient in complement component 5 (C5, also known as hemolytic complement, Hc), a key mediator of the downstream processes of the complement cascade, including the formation of the membrane attack complex. METHODS: To assess the role of C5 in DBA/2J glaucoma, we backcrossed a functional C5 gene from strain C57BL/6J to strain DBA/2J for at least 10 generations. The prevalence and severity of glaucoma was evaluated using ocular examinations, IOP measurements, and assessments of optic nerve damage and RGC degeneration. To understand how C5 affects glaucoma, C5 expression was assessed in the retinas and optic nerves of C5-sufficient DBA/2J mice, using immunofluorescence. RESULTS: C5-sufficient DBA/2J mice developed a more severe glaucoma at an earlier age than standard DBA/2J mice, which are therefore protected by C5 deficiency. Components of the membrane attack complex were found to be deposited at sites of axonal injury in the optic nerve head and associated with RGC soma in the retina. CONCLUSION: C5 plays an important role in glaucoma, with its deficiency lessening disease severity. These results highlight the importance of fully understanding the role of the complement cascade in neurodegenerative diseases. Inhibiting C5 may be beneficial as a therapy for human glaucoma.


Assuntos
Complemento C5/deficiência , Glaucoma/metabolismo , Glaucoma/prevenção & controle , Animais , Glaucoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA