Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 205(2): 425-437, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513849

RESUMO

The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Mycobacterium bovis/imunologia , Proteínas do Envelope Viral/imunologia , Aciltransferases/genética , Animais , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Vacinas contra Ebola/genética , Feminino , Humanos , Imunoglobulina G/sangue , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas do Envelope Viral/genética
2.
J Immunol ; 201(12): 3604-3616, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455402

RESUMO

Effective subunit vaccines require the incorporation of adjuvants that stimulate cells of the innate immune system to generate protective adaptive immune responses. Pattern recognition receptor agonists are a growing class of potential adjuvants that can shape the character of the immune response to subunit vaccines by directing the polarization of CD4 T cell differentiation to various functional subsets. In the current study, we applied a high-throughput in vitro screen to assess murine CD4 T cell polarization by a panel of pattern recognition receptor agonists. This identified lipopeptides with TLR2 agonist activity as exceptional Th1-polarizing adjuvants. In vivo, we demonstrated that i.v. administration of TLR2 agonists with Ag in mice replicated the findings from in vitro screening by promoting strong Th1 polarization. In contrast, TLR2 agonists inhibited priming of Th1 responses when administered cutaneously in mice. This route-specific suppression was associated with infiltrating CCR2+ cells in the skin-draining lymph nodes and was not uniquely dependent on any of the well characterized subsets of dendritic cells known to reside in the skin. We further demonstrated that priming of CD4 T cells to generate Th1 effectors following immunization with the Mycobacterium bovis bacillus Calmette-Guérin (BCG) strain, a lipoprotein-rich bacterium recognized by TLR2, was dependent on the immunization route, with significantly greater Th1 responses with i.v. compared with intradermal administration of BCG. A more complete understanding of route-dependent TLR2 responses may be critical for informed design of novel subunit vaccines and for improvement of BCG and other vaccines based on live-attenuated organisms.


Assuntos
Monócitos/imunologia , Mycobacterium bovis/imunologia , Receptores CCR2/metabolismo , Pele/imunologia , Células Th1/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Movimento Celular , Células Cultivadas , Vias de Administração de Medicamentos , Feminino , Tolerância Imunológica , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR2/genética , Proteínas Repressoras/genética , Vacinação
3.
J Immunol ; 199(7): 2596-2606, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821584

RESUMO

Analysis of Ag-specific CD4+ T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4+ T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4+ T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4+ T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154+ cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4+ CD154+ cells was distinct from that of CD154- cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4+ T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4+ T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/genética , Perfilação da Expressão Gênica/métodos , Ativação Linfocitária , Mycobacterium bovis/imunologia , Animais , Antígenos de Bactérias/imunologia , Ligante de CD40/análise , Ligante de CD40/deficiência , Citocinas/biossíntese , Citocinas/imunologia , Epitopos , Interleucina-3/biossíntese , Interleucina-3/imunologia , Camundongos , Vacinação
4.
J Neurosci ; 34(49): 16320-35, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471571

RESUMO

Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNß injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination.


Assuntos
Axônios/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Interferon beta/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Mediadores da Inflamação/metabolismo , Infusões Intraventriculares , Injeções Subcutâneas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interferon beta/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Oligodendroglia/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Medula Espinal/imunologia
5.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853867

RESUMO

Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.

6.
Cancer Res ; 81(7): 1788-1801, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483371

RESUMO

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.


Assuntos
Antígenos CD1d/farmacologia , Anergia Clonal/efeitos dos fármacos , Galactosilceramidas/farmacologia , Imunoterapia/métodos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Antígenos CD1d/química , Antígenos CD1d/imunologia , Anergia Clonal/imunologia , Feminino , Galactosilceramidas/química , Humanos , Imunoconjugados/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Células Tumorais Cultivadas
7.
Immunohorizons ; 3(5): 161-171, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31356170

RESUMO

During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3-secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3-producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3-secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3-secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.


Assuntos
Interleucina-3/biossíntese , Mucosa/microbiologia , Pele/microbiologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/imunologia , Listeria monocytogenes/imunologia , Listeriose/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/imunologia , Mucosa/virologia , Mycobacterium bovis/imunologia , Pele/imunologia , Pele/virologia , Tuberculose/microbiologia
8.
Chem Phys Lipids ; 194: 49-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26496152

RESUMO

Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.


Assuntos
Antígenos CD1d/metabolismo , Endossomos/química , Endossomos/metabolismo , Glicolipídeos/metabolismo , Animais , Antígenos CD1d/química , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Glicolipídeos/química , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Baço/citologia , Baço/metabolismo , Ativação Transcricional
9.
Chem Phys Lipids ; 191: 75-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26306469

RESUMO

Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.


Assuntos
Antígenos CD1d/metabolismo , Glicolipídeos/metabolismo , Células T Matadoras Naturais/metabolismo , Animais , Antígenos CD1d/química , Antígenos CD1d/genética , Linhagem Celular , Endossomos/química , Endossomos/metabolismo , Feminino , Glicolipídeos/química , Concentração de Íons de Hidrogênio , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA