Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3817-3825, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297594

RESUMO

Measuring the spectral phase of a pulse is key for performing wavelength resolved ultrafast measurements in the few femtosecond regime. However, accurate measurements in real experimental conditions can be challenging. We show that the reflectivity change induced by coherent phonons in a quantum material can be used to infer the spectral phase of an optical probe pulse with few-femtosecond accuracy.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039712

RESUMO

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

3.
Opt Lett ; 44(4): 731-734, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767973

RESUMO

Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterize tuneable 3 fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.

4.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170468, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30929634

RESUMO

High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

5.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880248

RESUMO

The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Proteínas Luminescentes/química , Conformação Proteica , Temperatura
6.
Opt Express ; 24(21): 24786-24798, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828198

RESUMO

We present a variant of spatially encoded spectral shearing interferometry for measuring two-dimensional spatio-temporal slices of few-cycle pulses centered around 2 µm. We demonstrate experimentally that the device accurately retrieves the pulse-front tilt caused by angular dispersion of two-cycle pulses. We then use the technique to characterize 500-650 µJ pulses from a hollow fiber pulse compressor, with durations as short as 7.1 fs (1.3 optical cycles).

7.
Chemphyschem ; 17(16): 2465-72, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27298209

RESUMO

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

8.
Faraday Discuss ; 194: 349-368, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711830

RESUMO

We theoretically study high-harmonic generation in toluene, ortho-xylene and fluorobenzene driven by a 1.8 µm ultrashort pulse. We find that the chemical substitutions have a strong influence on the amplitude and phase of the emission from the highest occupied molecular orbital, despite having a small influence on the orbital itself. We show that this influence is due to the tunnel ionization step, which depends critically on the sign and amplitude of the asymptotic part of the wave function. We discuss how these effects would manifest in phase-sensitive high-harmonic generation spectroscopy experiments.

9.
J Chem Phys ; 141(24): 244109, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554135

RESUMO

The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.


Assuntos
Fenômenos Eletromagnéticos , Modelos Químicos , Simulação por Computador , Dimerização , Análise Espectral , Vibração
10.
Opt Express ; 20(24): 26424-33, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187496

RESUMO

We experimentally demonstrate the feasibility of a super-resolution technique based on eigenmode decomposition. This technique has been proposed theoretically but, to the best of our knowledge, has not previously been realized experimentally for optical imaging systems with circular apertures. We use a standard diffraction-limited 4f imaging system with circular apertures for which the radial eigenmodes are the circular prolate spheroidal functions. For three original objects with different content of angular information we achieve 45%, 49%, and 89% improvement of resolution over the Rayleigh limit. The work presented can be considered as progress towards the goal of reaching the quantum limits of super-resolution.


Assuntos
Aumento da Imagem/métodos , Microscopia de Fluorescência/métodos , Óptica e Fotônica , Análise de Fourier , Humanos
11.
Nat Commun ; 13(1): 238, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017507

RESUMO

Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.

15.
Rev Sci Instrum ; 92(10): 103003, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717375

RESUMO

In this work, we present an achromatic pump-probe setup covering the visible (VIS) to near-infrared (NIR) wavelength regions (500-3000 nm) for few-cycle pulses. Both the pump and probe arms can work either in the VIS or the NIR wavelength regions, making our setup suitable for multi-color, broadband pump-probe measurements. In particular, our setup minimizes time-smearing due to the phase front curvature, an aspect of ultrafast spectroscopy that has been missing from previous works and allowing us to achieve sub-20-fs temporal resolution. We demonstrate the capabilities of our setup by performing measurements on Pr0.5Ca1.5MnO4. We pump and probe in both wavelength regions with a range of pump fluences and demonstrate how the observed dynamics depend strongly on the probe wavelength. Furthermore, the observation of a 16.5 THz phonon demonstrates the high temporal resolution of the setup.

16.
Sci Adv ; 7(33)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34380611

RESUMO

Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.

17.
Sci Rep ; 11(1): 2485, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510363

RESUMO

We present a new methodology for measuring few-femtosecond electronic and nuclear dynamics in both atoms and polyatomic molecules using multidimensional high harmonic generation (HHG) spectroscopy measurements, in which the spectra are recorded as a function of the laser intensity to form a two-dimensional data set. The method is applied to xenon atoms and to benzene molecules, the latter exhibiting significant fast nuclear dynamics following ionization. We uncover the signature of the sub-cycle evolution of the returning electron flux in strong-field ionized xenon atoms, implicit in the strong field approximation but not previously observed directly. We furthermore extract the nuclear autocorrelation function in strong field ionized benzene cations, which is determined to have a decay of [Formula: see text] fs, in good agreement with the [Formula: see text] fs obtained from direct dynamics variational multi-configuration Gaussian calculations. Our method requires minimal assumptions about the system, and is applicable even to un-aligned polyatomic molecules.

18.
Sci Rep ; 10(1): 4690, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170219

RESUMO

Tuneable ultrafast laser pulses are a powerful tool for measuring difficult-to-access degrees of freedom in materials science. In general these experiments require the ability to address resonances and excitations both above and below the bandgap of materials, and to probe their response at the timescale of the fastest non-trivial internal dynamics. This drives the need for ultrafast sources capable of delivering 10-15 fs duration pulses tuneable across the entire visible (VIS) and near infrared (NIR) range, 500- 3000 nm, as well as the characterization of these sources. Here we present a single frequency-resolved optical gating (FROG) system capable of self-referenced characterization of pulses with 10 fs duration across the entire VIS-NIR spectral range. Our system does not require auxiliary beams and only minor reconfiguration for different wavelengths. We demonstrate the system with measurements of pulses across the entire tuning range.

19.
Rev Sci Instrum ; 89(8): 083110, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184663

RESUMO

There has been considerable recent interest in tabletop soft X-ray attosecond sources enabled by the new generation of intense, few-cycle laser sources at operating wavelengths longer than 800 nm. In our recent work [Johnson et al., Sci. Adv. 4(5), eaar3761 (2018)], we have demonstrated a new regime for the generation of X-ray attosecond pulses in the water window (284-540 eV) by high-harmonic generation, which resulted in soft X-ray fluxes of ≈109 photons/s and a maximum photon energy of 600 eV, an order of magnitude and 50 eV higher, respectively, than previously attained with few-cycle drivers. Here we present the key elements of our apparatus for the generation and detection of soft X-ray high harmonic radiation in the water window. Of critical importance is a differentially pumped gas target capable of supporting the multi-atmospheric pressures required to phase-match the high energy emission while strongly constraining the gas density, suppressing the effects of ionization and absorption outside the interaction region.

20.
Sci Adv ; 4(5): eaar3761, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29756033

RESUMO

Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to fields that drive even longer wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA