Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 18(9): e11087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161508

RESUMO

The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.


Assuntos
Ciclinas , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Ciclinas/genética , Ciclinas/metabolismo
2.
ACS Omega ; 7(44): 40446-40455, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385874

RESUMO

Currently, effects of nanomaterials and their ions, such as silver nanoparticles (Ag NPs) and silver ions (Ag+), on living organisms are not yet fully understood. One of the vital questions is whether nanomaterials have distinctive effects on living organisms from any other conventional chemicals (e.g., their ions), owing to their unique physicochemical properties. Due to various experimental protocols, studies of this crucial question have been inconclusive, which hinders rational design of effective regulatory guidelines for safely handling NPs. In this study, we chronically exposed early developing zebrafish embryos (cleavage-stage, 2 hours post-fertilization, hpf) to a dilution series of Ag+ (0-1.2 µM) in egg water (1 mM NaCl, solubility of Ag+ = 0.18 µM) until 120 hpf. We systematically investigated effects of Ag+ on developing embryos and compared them with our previous studies of effects of purified Ag NPs on developing embryos. We found the concentration- and time-dependent effects of Ag+ on embryonic development, and only half of the embryos developed normally after being exposed to 0.25 µM (27 µg/L) Ag+ until 120 hpf. As the Ag+ concentration increases, the number of embryos that developed normally decreases, while the number of embryos that became dead increases. The number of abnormally developing embryos increases as the Ag+ concentration increases from 0 to 0.3 µM and then decreases as the concentration increases from 0.3 to 1.2 µM because the number of embryos that became dead increases. The concentration-dependent phenotypes were observed, showing fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at low Ag+ concentrations (≤0.2 µM) and head and eye abnormalities along with fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at high concentrations (≥0.3 µM). Severities of phenotypes and the number of abnormally developing embryos were far less than those observed in Ag NPs. The results also show concentration-dependent effects on heart rates and hatching rates of developing embryos, attributing to the dose-dependent abnormally developing embryos. In summary, the results show that Ag+ and Ag NPs have distinctive toxic effects on early developing embryos, and toxic effects of Ag+ are far less severe than those of Ag NPs, which further demonstrates that the toxicity of Ag NPs toward embryonic development is attributed to the NPs themselves and their unique physicochemical properties but not the release of Ag+ from the Ag NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA