Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807495

RESUMO

Microtubule-stabilizing agents (MSAs) are a class of compounds used in the treatment of triple-negative breast cancer (TNBC), a subtype of breast cancer where chemotherapy remains the standard-of-care for patients. Taxanes like paclitaxel and docetaxel have demonstrated efficacy against TNBC in the clinic, however new classes of MSAs need to be identified due to the rise of taxane resistance in patients. (-)-Zampanolide is a covalent microtubule stabilizer that can circumvent taxane resistance in vitro but has not been evaluated for in vivo antitumor efficacy. Here, we determine that (-)-zampanolide has similar potency and efficacy to paclitaxel in TNBC cell lines, but is significantly more persistent due to its covalent binding. We also provide the first reported in vivo antitumor evaluation of (-)-zampanolide where we determine that it has potent and persistent antitumor efficacy when delivered intratumorally. Future work on zampanolide to further evaluate its pharmacophore and determine ways to improve its systemic therapeutic window would make this compound a potential candidate for clinical development through its ability to circumvent taxane-resistance mechanisms.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Macrolídeos/química , Microtúbulos/metabolismo , Paclitaxel/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003207

RESUMO

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Reprodutibilidade dos Testes
4.
Tetrahedron ; 74(2): 217-223, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29576661

RESUMO

Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin (1) and the new derivative, 6-Br-8-keto-conicamin A (2), were identified and 2 (IC50 1.5 µM for the natural product vs 4.1 µM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.

5.
Mar Drugs ; 15(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353633

RESUMO

This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS² runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid carcinoma (PANC-1) cell line IC50 data was obtained for 16 compounds and two therapeutic standards. These results along with data gleaned from the literature provided useful structure activity relationship conclusions. Three structural motifs proved to be important in maximizing potency against PANC-1: (i) conjugation within the core of the ABC-ring; (ii) the presence of a positive charge in the C-ring; and (iii) inclusion of a 4-ethyl phenol or 4-ethyl phenol acetate substituent off the B-ring. Two compounds, makaluvamine J (9) and 15-O-acetyl makaluvamine J (15), contained all three of these frameworks and exhibited the best potency with IC50 values of 54 nM and 81 nM, respectively. These two most potent analogs were then tested against the OVCAR-5 cell line and the presence of the acetyl group increased the potency 14-fold from that of 9 whose IC50 = 120 nM vs. that of 15 having IC50 = 8.6 nM.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Pirroliminoquinonas/química , Pirroliminoquinonas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética/métodos , Poríferos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Relação Estrutura-Atividade
6.
J Nat Prod ; 78(3): 441-52, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25699470

RESUMO

Sampling of California nearshore sediments resulted in the isolation of a Gram-negative bacterium, Photobacterium halotolerans, capable of producing unusual biosynthetic products. Liquid culture in artificial seawater-based media provided cyclic depsipeptides including four known compounds, kailuins B-E (2-5), and two new analogues, kailuins G and H (7 and 8). The structures of the new and known compounds were confirmed through extensive spectroscopic and Marfey's analyses. During the course of these studies, a correction was made to the previously reported double-bond geometry of kailuin D (4). Additionally, through the application of a combination of derivatization with Mosher's reagent and extensive (13)C NMR shift analysis, the previously unassigned chiral center at position C-3 of the ß-acyloxy group of all compounds was determined. To evaluate bioactivity and structure-activity relationships, the kailuin core (13) and kailuin lactam (14) were prepared by chiral synthesis using an Fmoc solid-phase peptide strategy followed by solution-phase cyclization. All isolated compounds and synthetic cores were assayed for solid tumor cell cytotoxicity and showed only minimal activity, contrary to other published reports. Additional phenotypic screenings were done on 4 and 5, with little evidence of activity.


Assuntos
Fatores Biológicos/química , Fatores Biológicos/isolamento & purificação , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Bactérias Gram-Negativas/química , Photobacterium/química , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade
7.
J Nat Prod ; 77(3): 690-702, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24571234

RESUMO

Compounds from macro marine organisms are presumed to owe their biosynthetic origins to associated microbial symbionts, although few definitive examples exist. An upsurge in the recent literature from 2012 to 2013 has shown that four compounds previously reported from macro marine organisms are in fact biosynthesized by non-photosynthetic Gram-negative bacteria (NPGNB). Structural parallels between compounds isolated from macro marine organisms and NPGNB producers form the basis of this review. Although less attention has been given to investigating the chemistry of NPGNB sources, there exists a significant list of structural parallels between NPGNB and macro marine organism-derived compounds. Alternatively, of the thousands of compounds isolated from Gram-positive actinomycetes, few structural parallels with macro marine organisms are known. A summary of small molecules isolated from marine NPGNB sources is presented, including compounds isolated from marine myxobacteria. From this assemblage of structural parallels and diverse chemical structures, it is hypothesized that the potential for the discovery of inspirational molecules from NPGNB sources is vast and that the recent spike in the literature of macro marine compounds owing their biosynthetic origin to NPGNB producers represents a turning point in the field.


Assuntos
Produtos Biológicos , Biologia Marinha , Actinobacteria/química , Produtos Biológicos/química , Descoberta de Drogas , Bactérias Gram-Negativas/química , Estrutura Molecular
8.
Geroscience ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570396

RESUMO

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

9.
Bioorg Med Chem ; 21(14): 4358-64, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23735825

RESUMO

An evaluation of Indonesian plants to identify compounds with immune modulating activity revealed that the methanolic extract of an Alphonsea javanica Scheff specimen possessed selective anti-inflammatory activity in a nuclear factor-kappa B (NF-κB) luciferase and MTT assay using transfected macrophage immune (Raw264.7) cells. A high-throughput LC/MS-ELSD based library approach of the extract in combination with the NF-κB and MTT assays revealed the styryl lactone (+)-altholactone (2) was responsible for the activity. Compound 2, its acetylated derivate (+)-3-O-acetylaltholactone (3), and the major compound of this class, (+)-goniothalmin (1), were further evaluated to determine their anti-inflammatory potential in the NF-κB assay. Concentration-response studies of 1-3 indicated that only 2 possessed NF-κB based anti-inflammatory activity. Compound 2 reduced the LPS-induced NO production, phosphorylation of IκBα, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using Western blot analysis. Further studies using qPCR indicated 2 reduced the expression of eight pro-inflammatory cytokines/enzymes (0.8-5.0µM) which included: COX-2, iNOS, IP-10, IL-1ß, MCP-1, GCS-F, IL-6 and IFN-ß. These results indicated that 2 displays broad spectrum immune modulating activity by functioning as an anti-inflammatory agent against LPS-induced NF-κB signaling. Conversely the selective cytotoxicity and in vivo anti-tumor and anti-inflammatory activity previously reported for 1 do not appear to arise from a mechanism that is linked to the NF-κB immune mediated pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Furanos/antagonistas & inibidores , Inflamação/tratamento farmacológico , Pironas/antagonistas & inibidores , Animais , Western Blotting , Linhagem Celular , Citocinas/antagonistas & inibidores , Citocinas/genética , Humanos , Imunomodulação , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Estrutura Molecular , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
10.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38077060

RESUMO

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), a widely used ETC complex I inhibitor, these two molecules showed cytotoxicity to cancer cells but strikingly demonstrate a lack of toxicity to non-cancer cells, a highly beneficial feature in the development of anti-cancer therapeutics. Furthermore, in vivo experiments with these small molecules utilizing C.elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. Interestingly, we also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilize the transcription factors ATFS-1 and HSF-1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF-1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

11.
J Exp Ther Oncol ; 10(2): 119-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23350352

RESUMO

A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Drogas em Investigação/farmacologia , Poríferos/química , Terapêutica , Animais , Ensaio de Unidades Formadoras de Colônias , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Células Tumorais Cultivadas
12.
Bioorg Med Chem ; 20(14): 4348-55, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705020

RESUMO

A nuclear factor-κB (NF-κB) luciferase assay has been employed to identify the bengamides, previously known for their anti-tumor activity, as a new class of immune modulators. A unique element of this study was that the bengamide analogs were isolated from two disparate sources, Myxococcus virescens (bacterium) and Jaspis coriacea (sponge). Comparative LC-MS/ELSD and NMR analysis facilitated the isolation of M. viriscens derived samples of bengamide E (8) and two congeners, bengamide E' (13) and F' (14) each isolated as an insperable mixture of diastereomers. Additional compounds drawn from the UC, Santa Cruz repository allowed expansion of the structure activity relationship (SAR) studies. The activity patterns observed for bengamide A (6), B (7), E (8), F (9), LAF 389 (12) and 13-14 gave rise to the following observations and conclusions. Compounds 6 and 7 display potent inhibition of NF-κB (at 80 and 90 nM, respectively) without cytotoxicity to RAW264.7 macrophage immune cells. Western blot and qPCR analysis indicated that 6 and 7 reduce the phosphorylation of IκBα and the LPS-induced expression of the pro-inflammatory cytokines/chemokines TNFα, IL-6 and MCP-1 but do not effect NO production or the expression of iNOS. These results suggest that the bengamides may serve as therapeutic leads for the treatment of diseases involving inflammation, that their anti-tumor activity can in part be attributed to their ability to serve as immune modulating agents, and that their therapeutic potential against cancer merits further consideration.


Assuntos
Alcaloides/química , Azepinas/química , Fatores Imunológicos/química , Myxococcales/química , Poríferos/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Azepinas/isolamento & purificação , Azepinas/farmacologia , Quimiocina CCL2/metabolismo , Cromatografia Líquida de Alta Pressão , Células HCT116 , Humanos , Quinase I-kappa B/metabolismo , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
13.
ACS Omega ; 7(10): 8824-8832, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309480

RESUMO

Herein, we report on naturally derived microtubule stabilizers with activity against triple negative breast cancer (TNBC) cell lines, including paclitaxel, fijianolide B/laulimalide (3), fijianolide B di-acetate (4), and two new semisynthetic analogs of 3, which include fijianolide J (5) and fijianolide L (6). Similar to paclitaxel, compound 3 demonstrated classic microtubule stabilizing activity with potent (GI50 = 0.7-17 nM) antiproliferative efficacy among the five molecularly distinct TNBC cell lines. Alternatively, compounds 5 or 6, generated from oxidation of C-20 or C-15 and C-20 respectively, resulted in a unique profile with reduced potency (GI50 = 4-9 µM), but improved efficacy in some lines, suggesting a distinct mechanism of action. The C-15, C-20 di-acetate, and dioxo modifications on 4 and 6 resulted in compounds devoid of classic microtubule stabilizing activity in biochemical assays. While 4 also had no detectable effect on cellular microtubules, 6 promoted a reorganization of the cytoskeleton resulting in an accumulation of microtubules at the cell periphery. Compound 5, with a single C-20 oxo substitution, displayed a mixed phenotype, sharing properties of 3 and 6. These results demonstrate the importance of the C-15/C-20 chiral centers, which appear to be required for the potent microtubule stabilizing activity of this chemotype and that oxidation of these sites promotes unanticipated cytoskeletal alterations that are distinct from classic microtubule stabilization, likely through a distinct mechanism of action.

14.
J Nat Prod ; 74(12): 2545-55, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22129061

RESUMO

A high-throughput (HT) paradigm generating LC-MS-UV-ELSD-based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology, an extract of the Indo-Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including latrunculins (1-4, 10), fijianolides (5, 8, 9), mycothiazole (11), aignopsanes (6, 7), and sacrotride A (13). Compounds 1-5 and 8-11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including aignopsanoic acid B (13), apo-latrunculin T (14), 20-methoxy-fijianolide A (15), and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly, and 15 demonstrated modest microtubule-stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only one or two major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and/or new molecular structures using LC-MS-UV-ELSD-based libraries.


Assuntos
Produtos Biológicos , Técnicas de Química Combinatória , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Células HeLa , Humanos , Biologia Marinha , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Poríferos/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
15.
Bioorg Med Chem ; 18(16): 5988-94, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20637638

RESUMO

A natural product chemistry-based approach was applied to discover small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1). A Petrosaspongia mycofijiensis marine sponge extract yielded mycothiazole (1), a solid tumor selective compound with no known mechanism for its cell line-dependent cytotoxic activity. Compound 1 inhibited hypoxic HIF-1 signaling in tumor cells (IC(50) 1nM) that correlated with the suppression of hypoxia-stimulated tumor angiogenesis in vitro. However, 1 exhibited pronounced neurotoxicity in vitro. Mechanistic studies revealed that 1 selectively suppresses mitochondrial respiration at complex I (NADH-ubiquinone oxidoreductase). Unlike rotenone, MPP(+), annonaceous acetogenins, piericidin A, and other complex I inhibitors, mycothiazole is a mixed polyketide/peptide-derived compound with a central thiazole moiety. The exquisite potency and structural novelty of 1 suggest that it may serve as a valuable molecular probe for mitochondrial biology and HIF-mediated hypoxic signaling.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Poríferos/química , Tiazóis/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Ratos , Tiazóis/isolamento & purificação
16.
Anal Bioanal Chem ; 396(5): 1741-4, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20043220

RESUMO

Latrunculol A is a recently discovered 6,7-dihydroxy analog of the potent actin inhibitor latrunculin A. Latrunculol A has exhibited greater cytotoxicity than latrunculin A against both murine and human colon tumor cell lines in vitro. Currently, there are no reports regarding the bioavailability of latrunculol A in vivo. This study was undertaken as a prelude to pharmacokinetic assessments and it is the first work where bioavailability of latrunculol A was studied. In the present work, a simple plasma preparation and a rapid HPLC method have been developed. Mouse plasma containing latrunculol A was first treated by acetonitrile and then centrifuged at 14,000 rpm at 4 °C for 25 min. The supernatant was injected in an HPLC system comprising a Waters Symmetry NH(2) column, a mobile phase of acetonitrile/water (95/5, v/v), a flow rate of 1.0 mL/min, at 220 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 9 ng/mL, and a good precision with a coefficient variation of 1.65, 1.86, and 1.26% for 20, 400, and 800 ng/mL, respectively. With this simple method, excellent separation and sensitivity of latrunculol A are achieved, thus allowing a rapid analysis of the plasma samples for absorption, distribution, and metabolism studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Macrolídeos/sangue , Tiazolidinas/sangue , Animais , Calibragem , Cromatografia Líquida de Alta Pressão/instrumentação , Feminino , Macrolídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Tiazolidinas/química , Fatores de Tempo
17.
J Nat Prod ; 73(3): 359-64, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20030364

RESUMO

In order to compare the utility of standard solvent partitioning (SSP) versus accelerated solvent extraction (ASE), a series of experiments were performed and evaluated. Overall yields, solvent consumption, processing time, and chemical stability of the fractions obtained by both methods were compared. Five marine sponges were selected for processing and analysis containing 12 structurally distinct, bioactive natural products. Extracts generated using SSP and ASE were assessed for chemical degradation using comparative LC MS-ELSD. The extraction efficiency (EE) of the ASE apparatus was 3 times greater than the SSP method on average, while the total extraction yields (TEY) were roughly equivalent. Furthermore, the ASE methodology required only 2 h to process each sample versus 80 h for SSP, and the LC MS-ELSD from extracts of both methods appeared comparable. These results demonstrate that ASE can serve as an effective high-throughput methodology for extracting marine organisms to streamline the discovery of novel and bioactive natural products.


Assuntos
Produtos Biológicos/isolamento & purificação , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Poríferos/química , Animais , Produtos Biológicos/química , Cromatografia Líquida/instrumentação , Biologia Marinha , Espectrometria de Massas/instrumentação , Estrutura Molecular
18.
ACS Med Chem Lett ; 11(2): 108-113, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32071675

RESUMO

Reinvestigation of mycothiazole (1) revealed picomolar potency (IC50 = 0.00016, 0.00027, 0.00035 µM) against pancreatic, (PANC-1), liver (HepG2), and colon (HCT-116) tumor cell lines. Reevaluation of 1 provided [α]D data indicating Vanuatu specimens of C. mycofijiensis contain the 8S enantiomer of 1 and not the 8R configuration previously reported. Semisynthesis provided 8-O-acetylmycothiazole (2), 8-oxomycothiazole (8), mycothiazole nitrosobenzene derivatives (MND1, MND2: 9a, 9b), and MND3 (10) with IC50 = 0.00129, >1.0, >1.0, >1.0, >1.0 µM, respectively, against PANC-1 cell lines. These results highlight the significance of the penta-2,4-dien-1-ol residue as a key structural feature of 1 required for its cytotoxicty against tumor cell lines.

19.
J Org Chem ; 73(18): 7255-9, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18715038

RESUMO

A reinvestigation of a Fijian collection of Cacospongia mycofijiensis has yielded the known mycothiazole and a novel heterocyclic, CTP-431 (1). Its structure including absolute configuration as 8R,9R,10S,13S was established using NMR data, calculated DFT (13)C chemical shifts and results from X-ray crystallography. It is possible that the tricyclic skeleton of CTP-431 (1) is biosynthetically related to the macrolide latrunculin A, however the thiopyrone moiety of 1 has no previous precedent in natural products chemistry.


Assuntos
Poríferos/química , Pironas/isolamento & purificação , Animais , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Pironas/química , Padrões de Referência
20.
J Med Chem ; 50(16): 3795-803, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17622130

RESUMO

The sponge-derived polyketide macrolides fijianolides A (1) and B (2), isolaulimalide and laulimalide, have taxol-like microtubule-stabilizing activity, and the latter exhibits potent cytotoxicity. Insight on the biogeographical and phenotypic variations of Cacospongia mycofijiensis is presented that will enable a future study of the biosynthetic pathway that produces the fijianolides. In addition to fijianolides A and B, six new fijianolides, D-I (7-12), were isolated, each with modifications to the C-20 side chain of the macrolide ring. Compounds 7-12 exhibited a range of in vitro activities against HCT-116 and MDA-MB-435 cell lines. Fijianolides 8 and 10 were shown to disrupt interphase and mitotic division, but were less potent than 2. An in vivo evaluation of 2 using tumor-bearing severe combined immuno-deficiency mice demonstrated significant inhibition of growth in HCT-116 tumors over 28 days.


Assuntos
Antineoplásicos/isolamento & purificação , Macrolídeos/isolamento & purificação , Poríferos/química , Taxoides/isolamento & purificação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrolídeos/química , Macrolídeos/farmacologia , Camundongos , Camundongos SCID , Modelos Moleculares , Transplante de Neoplasias , Relação Estrutura-Atividade , Taxoides/química , Taxoides/farmacologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA