Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 2(5): 1144-1159, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647599

RESUMO

Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA