Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Microbiol ; 24(4): 1703-1713, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390610

RESUMO

The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean.


Assuntos
Água do Mar , Estramenópilas , Processos Heterotróficos , Proteínas de Membrana Transportadoras , Oceanos e Mares
2.
Environ Microbiol ; 24(4): 1746-1759, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921709

RESUMO

The Galápagos Archipelago lies within the Eastern Equatorial Pacific Ocean at the convergence of major ocean currents that are subject to changes in circulation. The nutrient-rich Equatorial Undercurrent upwells from the west onto the Galápagos platform, stimulating primary production, but this source of deep water weakens during El Niño events. Based on measurements from repeat cruises, the 2015/16 El Niño was associated with declines in phytoplankton biomass at most sites throughout the archipelago and reduced utilization of nitrate, particularly in large-sized phytoplankton in the western region. Protistan assemblages were identified by sequencing the V4 region of the 18S rRNA gene. Dinoflagellates, chlorophytes and diatoms dominated most sites. Shifts in dinoflagellate communities were most apparent between the years; parasitic dinoflagellates, Syndiniales, were highly detected during the El Niño (2015) while the dinoflagellate genus, Gyrodinium, increased at many sites during the neutral period (2016). Variations in protistan communities were most strongly correlated with changes in subthermocline water density. These findings indicate that marine protistan communities in this region are regimented by deep water mass sources and thus could be profoundly affected by altered ocean circulation.


Assuntos
El Niño Oscilação Sul , Plâncton , Oceano Pacífico , Fitoplâncton/genética , Água
3.
Environ Microbiol ; 24(9): 4167-4177, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715385

RESUMO

Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host-associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population-level impacts of disturbance in the dynamic coastal ocean. Here, we utilize 3 years of observations from a coastal time series to identify disturbances based on the largest week-over-week changes in the microbiome (i.e. identifying disturbance as events that alter the community composition). In general, these microbiome disturbances were not clearly linked to specific environmental factors and responsive taxa largely differed, aside from SAR11, which generally declined. However, several disturbance metagenomes identified increased phage-associated genes, suggesting that unexplained community shifts might be caused by increased mortality. Furthermore, a category 1 hurricane, the only event that would likely be classified a priori as an environmental disturbance, was not an outlier in microbiome composition, but did enhance a bloom in seasonally abundant phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what constitutes a disturbance should be re-examined in the context of ecological history and microbiome responses.


Assuntos
Microbiota , Metagenoma , Microbiota/genética , Oceanos e Mares , Fitoplâncton
4.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33097514

RESUMO

Heterotrophic microbes play a key role in remineralizing organic material in the coastal ocean. While there is a significant body of literature examining heterotrophic bacterioplankton and phytoplankton communities, much less is known about the diversity, dynamics, and ecology of eukaryotic heterotrophs. Here, we focus on the Labyrinthulomycetes, a fungus-like protistan group whose biomass can exceed that of the bacterioplankton in coastal waters. We examined their diversity and community structure in a weekly temperate coastal ocean time series. Their seasonal community patterns were related to temperature, insolation, dissolved inorganic carbon, fungal abundance, ammonia, chlorophyll a, pH, and other environmental variables. Similar to the bacterioplankton, annual community patterns of the Labyrinthulomycetes were dominated by a few persistent taxa with summer or winter preferences. However, like the patterns of fungi at this site, the majority of the Labyrinthulomycetes phylotypes occurred mostly as short, reoccurring, season-specific blooms. Furthermore, some specific phylotypes of Labyrinthulomycetes displayed time-lagged correlations or cooccurrences with bacterial, algal, or fungal phylotypes, suggesting their potentially multifaceted involvement in the marine food webs. Overall, this study reports niche partitioning between closely related Labyrinthulomycetes and identifies distinct ecotypes and temporal patterns compared to bacterioplankton and fungi.IMPORTANCE Increasing evidence has shown that heterotrophic microeukaryotes are an important component in global marine ecosystems, while their diversity and ecological functions remain largely unknown. Without appropriately incorporating these organisms into the food web models, our current understanding of marine microbial community ecology is incomplete, which may further hamper broader studies of biogeochemistry and climate change. This study focuses on a major group of unicellular fungus-like protists (Labyrinthulomycetes) and reveals their distinct annual community patterns relative to fungi and bacteria. Results of our observations provide new information on the community structure and ecology of this protistan group and shed light on the intricate ecological roles of unicellular heterotrophic eukaryotes in the coastal oceans.


Assuntos
Água do Mar/microbiologia , Estramenópilas , Cadeia Alimentar , Filogenia , RNA Ribossômico 18S , Estramenópilas/genética
5.
Proc Natl Acad Sci U S A ; 115(52): 13300-13305, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530699

RESUMO

Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.

6.
Environ Microbiol ; 21(10): 3862-3872, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31286605

RESUMO

Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five-station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time-series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities. Water temperature and distance from shore (which serves as a proxy for gradients in factors such as productivity, terrestrial input and nutrients) both most influence community composition. However, at the phylotype level, modelling shows the distribution of some taxa is linked to temperature, others to distance from shore and some by both factors, highlighting that taxa with distinct environmental preferences underlie apparent clustering by station. Thus, continental margins contain microbial communities that are distinct from those of either the nearshore or the offshore environments and contain mixtures of phylotypes with nearshore or offshore preferences rather than those unique to the shelf environment.


Assuntos
Cianobactérias/classificação , Microbiota/genética , Roseobacter/classificação , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Oceanos e Mares , RNA Ribossômico 16S/genética , Roseobacter/genética , Roseobacter/isolamento & purificação , Temperatura
7.
Environ Microbiol ; 20(8): 3042-3056, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29968383

RESUMO

The unicellular Labyrinthulomycete protists have long been considered to play a significant role in ocean carbon cycling. However, their distribution and biogeochemical function remain poorly understood. We present a large-scale study of their spatiotemporal abundance and diversity in the coastal waters of Bohai Sea using flow cytometry and high-throughput sequencing. These protists display niche preferences and episodic higher biomass than that of bacterioplankton with much phylogenetic diversity (> 4000 OTUs) ever reported. They were ubiquitous with a typical abundance range of 100-1000 cells ml-1 and biomass range of 0.06-574.59 µg C L-1 . The observed spatiotemporal abundance variations support the current 'left-over scavengers' nutritional model and highlight these protists as a significant component of the marine microbial loop. The higher average abundance and phylogenetic diversity in the nearshore compared with those in the offshore reveal their predominant role in the terrigenous matter decomposition. Furthermore, the differential relationship of the protist genera to environmental conditions together with their co-occurrence network suggests their unique substrate preferences and niche partitioning. With few subnetworks and possible keystone species, their network topology indicates community resilience and high connectance level of few operational taxonomic units (OTUs). We demonstrate the significant contribution of these protists to the secondary production and nutrient cycling in the coastal waters. As secondary producers, their role will become more important with increasingly coastal eutrophication.


Assuntos
Eucariotos/classificação , Eucariotos/isolamento & purificação , Água do Mar/parasitologia , Biodiversidade , Biomassa , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Oceanos e Mares , Filogenia
8.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143506

RESUMO

There is a growing awareness of the ecological and biogeochemical importance of fungi in coastal marine systems. While highly diverse fungi have been discovered in these marine systems, still, little is known about their seasonality and associated drivers in coastal waters. Here, we examined fungal communities over 3 years of weekly sampling at a dynamic, temperate coastal site (Pivers Island Coastal Observatory [PICO], Beaufort, NC, USA). Fungal 18S rRNA gene abundance, operational taxonomic unit (OTU) richness, and Shannon's diversity index values exhibited prominent seasonality. Fungal 18S rRNA gene copies peaked in abundance during the summer and fall, with positive correlations with chlorophyll a, SiO4, and oxygen saturation. Diversity (measured using internal transcribed spacer [ITS] libraries) was highest during winter and lowest during summer; it was linked to temperature, pH, chlorophyll a, insolation, salinity, and dissolved inorganic carbon (DIC). Fungal communities derived from ITS libraries were dominated throughout the year by Ascomycota, with contributions from Basidiomycota, Chytridiomycota, and Mucoromycotina, and their seasonal patterns linked to water temperature, light, and the carbonate system. Network analysis revealed that while cooccurrence and exclusion existed within fungus networks, exclusion dominated the fungus-and-phytoplankton network, in contrast with reported pathogenic and nutritional interactions between marine phytoplankton and fungi. Compared with the seasonality of bacterial communities in the same samples, the timing, extent, and associated environmental variables for fungi community are unique. These results highlight the fungal seasonal dynamics in coastal water and improve our understanding of the ecology of planktonic fungi.IMPORTANCE Coastal fungal dynamics were long assumed to be due to terrestrial inputs; here, a high-resolution time series reveals strong, repeating annual patterns linked to in situ environmental conditions, arguing for a resident coastal fungal community shaped by environmental factors. These seasonal patterns do, however, differ from those observed in the bacterioplankton at the same site; e.g., fungal diversity peaks in winter, whereas bacterial diversity maxima occur in the spring and fall. While the dynamics of these communities are linked to water temperature and insolation, fungi are also influenced by the carbonate system (pH and DIC). As both fungi and heterotrophic bacteria are thought to be key organic-material metabolizers, differences in their environmental drivers may offer clues as to which group dominates secondary production at this dynamic site. Overall, this study suggests the unique ecological roles of mycoplankton and their potentially broad niche complementarities to other microbial groups in the coastal ocean.


Assuntos
Fungos/isolamento & purificação , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Biodiversidade , DNA Fúngico/genética , Ecossistema , Fungos/classificação , Fungos/genética , North Carolina , Oceanos e Mares , Filogenia , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 18S/genética , Estações do Ano , Água do Mar/química
9.
Proc Natl Acad Sci U S A ; 112(26): 8008-12, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080407

RESUMO

Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean.


Assuntos
Luz , Prochlorococcus/crescimento & desenvolvimento , Microbiologia da Água , Ecossistema , Cadeia Alimentar , Oceano Pacífico , Temperatura
10.
Appl Environ Microbiol ; 82(11): 3431-3437, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037125

RESUMO

UNLABELLED: There is a growing recognition of the roles of marine microenvironments as reservoirs of biodiversity and as sites of enhanced biological activity and in facilitating biological interactions. Here, we examine the bacterial community inhabiting free-living and particle-associated seawater microenvironments at the Pivers Island Coastal Observatory (PICO). 16S rRNA gene libraries from monthly samples (July 2013 to August 2014) were used to identify microbes in seawater in four size fractions: >63 µm (zooplankton and large particles), 63 to 5 µm (particles), 5 to 1 µm (small particles/dividing cells), and <1 µm (free-living prokaryotes). Analyses of microbial community composition highlight the importance of the microhabitat (e.g., particle-associated versus free-living lifestyle) as communities cluster by size fraction, and the microhabitat explains more of the community variability than measured environmental parameters, including pH, particle concentration, projected daily insolation, nutrients, and temperature. While temperature is statistically associated with community changes in the <1-µm and 5- to 1-µm fractions, none of the measured bulk seawater environmental variables are statistically significant in the larger-particle-associated fractions. These results, combined with high particle-associated community variability, especially in the largest size fraction (i.e., >63 µm), suggest that particle composition, including eukaryotes and their associated microbiomes, may be an important factor in selecting for specific particle-associated bacteria. IMPORTANCE: By comparing levels of particle-associated and free-living bacterial diversity at a coastal location over the course of 14 months, we show that bacteria associated with particles are generally more diverse and appear to be less responsive to commonly measured environmental variables than free-living bacteria. These diverse and highly variable particle-associated communities are likely driven by differences in particle substrates both within the water column at a single time point and due to seasonal changes over the course of the year.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Água do Mar/química , Água do Mar/microbiologia , Bactérias/genética , Bactérias/efeitos da radiação , Biota/efeitos da radiação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
11.
Environ Microbiol ; 17(7): 2421-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25403257

RESUMO

Time series studies have shown that some bacterial taxa occur only at specific times of the year while others are ubiquitous in spite of seasonal shifts in environmental variables. Here, we ask if these ubiquitous clades are generalists that grow over a wide range of environmental conditions, or clusters of strain-level environmental specialists. To answer this question, vibrio strains isolated at a coastal time series were phylogenetically and physiologically characterized revealing three dominant strategies within the vibrio: mesophiles, psychrophiles and apparently generalist broad thermal range clades. Thermal performance curves from laboratory growth rate experiments help explain field observations of relative abundances: the mesophilic clade grows optimally at temperatures 16°C higher than the psychrophilic clade. Strains in the broad thermal range clade all have similar optimal growth temperatures but also exhibit temperature-related tradeoffs with faster growth rates for warm temperature strains and broader growth ranges for strains from cool temperatures. Moreover, the mechanisms of thermal adaptation apparently differ based on evolutionary time scales: shifts in the temperature of maximal growth occur between deeply branching clades but thermal performance curve shape changes on shorter time scales. Thus, apparently ubiquitous clades are likely not generalists, but contain subclusters with distinct environmental preferences.


Assuntos
Aclimatação/fisiologia , Plâncton/fisiologia , Vibrio/fisiologia , Aclimatação/genética , Evolução Biológica , Ecossistema , Temperatura Alta , Filogenia , Plâncton/genética , Plâncton/isolamento & purificação , Vibrio/genética , Vibrio/isolamento & purificação
12.
Environ Microbiol ; 15(10): 2736-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23663376

RESUMO

In the open ocean genetically diverse clades of the unicellular cyanobacteria Prochlorococcus are biogeographically structured along environmental gradients, yet little is known about their in situ activity. To address this gap, here we use the numerically dominant Prochlorococcus clade eHL-II (eMIT9312) as a model organism to develop and apply a method to examine their in situ activity using rRNA content and cell size as metrics of cellular physiology. For two representative isolates (MIT9312 and MIT9215) rRNA cell(-1) increases linearly with specific growth rate but is anticorrelated with cell size indicated by flow cytometrically measured (SSC). Although each strain has a unique relationship between cellular rRNA (or cell size) and growth rate, both strains have the same strong positive correlation between rRNA cell(-1) SSC(-1) and growth rate. We field test this approach and observe distinct patterns of eHL-II clade specific activity (rRNA cell(-1) SSC(-1)) with depth that are consistent with patterns of photosynthetic rates. This molecular technique provides unique insight into the ecology of Prochlorococcus and could potentially be expanded to include other microbes to unravel the ecological and biogeochemical contributions of genetically distinct marine side scatter microbes.


Assuntos
Microbiologia Ambiental , Prochlorococcus/citologia , Prochlorococcus/fisiologia , RNA Ribossômico/análise , Luz , Nitratos/análise , Nitritos/análise , Fotossíntese/fisiologia , Prochlorococcus/genética , Prochlorococcus/crescimento & desenvolvimento , RNA Ribossômico/genética , Temperatura
13.
Appl Environ Microbiol ; 79(1): 177-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23087033

RESUMO

Marine microbial communities are complex and dynamic, and their ecology impacts biogeochemical cycles in pelagic ecosystems. Yet, little is known about the relative activities of different microbial populations within genetically diverse communities. We used rRNA as a proxy for activity to quantify the relative specific activities (rRNA/ribosomal DNA [rDNA or rRNA genes]) of the eubacterial populations and to identify locations or clades for which there are uncouplings between specific activity and abundance. After analyzing 1.6 million sequences from 16S rDNA and rRNA (cDNA) libraries from two euphotic depths from a representative site in the Pacific Ocean, we show that although there is an overall positive relationship between the abundances (rDNAs) and activities (rRNAs) among populations of the bacterial community, for some populations these measures are uncoupled. Different ecological strategies are exemplified by the two numerically dominant clades at this site: the cyanobacterium Prochlorococcus is abundant but disproportionately more active, while the heterotrophic SAR11 is abundant but less active. Other rare populations, such as Alteromonas, have high specific activities in spite of their low abundances, suggesting intense population regulation. More detailed analyses using a complementary quantitative PCR (qPCR)-based approach of measuring relative specific activity for Prochlorococcus populations in the Pacific and Atlantic Oceans also show that specific activity, but not abundance, reflects the key drivers of light and nutrients in this system; our results also suggest substantial top-down regulation (e.g., grazing, viruses, or organismal interactions) or transport (e.g., mixing, immigration, or emigration) of these populations. Thus, we show here that abundance and specific activity can be uncoupled in open ocean systems and that describing both is critical to characterizing microbial communities and predicting marine ecosystem functioning and responses to change.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Plâncton/metabolismo , Plâncton/microbiologia , Água do Mar/microbiologia , Análise por Conglomerados , Oceano Pacífico , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
14.
Mil Med ; 188(9-10): 3248-3251, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36043263

RESUMO

PURPOSE: The purpose of this case series is to evaluate the potential of continuous intravenous ketamine administration as part of a multimodal strategy to reduce opioid requirements after high tibial osteotomy (HTO) and distal femoral osteotomy (DFO). METHODS: We examined the average postoperative numerical rating scale pain intensity score from admission to the postanesthesia care unit to 8 am of the first postoperative day of four patients who underwent HTO or DFO. Pain scores were analyzed as the time-weighted sum of pain intensity differences using the trapezoidal rule of the curve, resulting in an area under the curve (AUC). RESULTS: Patient A had an AUC of 2,828 over 1,180 minutes with an average pain score of 2.4/10. Patient B had an AUC of 1,418 over 1,285 minutes with an average pain score of 1.1/10. Patient C had an AUC of 4,217 over 1,155 minutes with an average pain score of 3.7/10. Patient D had an AUC of 4,498 over 1,030 minutes with an average pain score of 4.4/10. All were able to go home on postoperative day 1. CONCLUSIONS: This novel perioperative pain pathway including multiple non-opioid pain adjuncts and a low-dose continuous ketamine infusion is an effective method for pain management in knee periarticular osteotomies. LEVEL OF EVIDENCE: Level 4; Case Series.


Assuntos
Ketamina , Humanos , Ketamina/uso terapêutico , Manejo da Dor/métodos , Dor Pós-Operatória/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Tíbia/cirurgia , Osteotomia/métodos , Estudos Retrospectivos
15.
PLoS One ; 18(11): e0293334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943816

RESUMO

Mesoscale oceanographic features, including eddies, have the potential to alter productivity and other biogeochemical rates in the ocean. Here, we examine the microbiome of a cyclonic, Gulf Stream frontal eddy, with a distinct origin and environmental parameters compared to surrounding waters, in order to better understand the processes dominating microbial community assembly in the dynamic coastal ocean. Our microbiome-based approach identified the eddy as distinct from the surround Gulf Stream waters. The eddy-associated microbial community occupied a larger area than identified by temperature and salinity alone, increasing the predicted extent of eddy-associated biogeochemical processes. While the eddy formed on the continental shelf, after two weeks both environmental parameters and microbiome composition of the eddy were most similar to the Gulf Stream, suggesting the effect of environmental filtering on community assembly or physical mixing with adjacent Gulf Stream waters. In spite of the potential for eddy-driven upwelling to introduce nutrients and stimulate primary production, eddy surface waters exhibit lower chlorophyll a along with a distinct and less even microbial community, compared to the Gulf Stream. At the population level, the eddy microbiome exhibited differences among the cyanobacteria (e.g. lower Trichodesmium and higher Prochlorococcus) and in the heterotrophic alpha Proteobacteria (e.g. lower relative abundances of specific SAR11 phylotypes) versus the Gulf Stream. However, better delineation of the relative roles of processes driving eddy community assembly will likely require following the eddy and surrounding waters since inception. Additionally, sampling throughout the water column could better clarify the contribution of these mesoscale features to primary production and carbon export in the oceans.


Assuntos
Cianobactérias , Água do Mar , Humanos , Água do Mar/química , Clorofila A , Oceanos e Mares , Temperatura
16.
J Anim Sci Biotechnol ; 14(1): 27, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922887

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) and calcidiol could be enriched in chicken for improving public nutrition and health. It remains unclear if supranutritional levels of DHA and calcidiol impair growth performance or metabolism of broiler chickens. This study was to determine singular and combined effects of high levels of supplemental DHA-rich microalgal biomass or oil and calcidiol on growth performance, concentrations of triglycerides, cholesterol, and nonesterfied fatty acids in plasma, liver, breast, and thigh, and biophysical properties of tibia. METHODS: In Exp. 1, 144 day-old Cornish chicks were divided into 4 groups (6 cages/treatment, 6 birds/cage), and were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU calcidiol/kg (BD + Cal), BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), and BD + Cal + DHA for 6 weeks. In Exp. 2, 180 day-old chicks were divided into 5 groups, and were fed: BD, BD + DHA (0.33% to 0.66% oil, 1.5 to 3.0 g DHA/kg), BD + DHA + EPA (1.9% to 3.8% eicosapentaenoic acid-rich Nannochloropsis sp. CO18, 0.3 to 0.6 g EPA/kg), BD + DHA + calcidiol (6000 to 12,000 IU/kg diet), and BD + DHA + EPA + Cal for 6 weeks. RESULTS: Birds fed BD + Cal diet in Exp. 1 and BD + DHA + EPA diet in Exp. 2 had higher (P < 0.05) body weight gain (10%-11%) and gain:feed ratio (7%), and lower (P < 0.05) total cholesterol and triglyceride concentrations in plasma (18%-54%), liver (8%-26%), breast (19%-26%), and thigh (10%-19%), respectively, over the controls. The two diets also improved (P < 0.05) tibial breaking strength (8%-24%), total bone volume (2%-13%), and (or) bone mineral density (3%-19%) of chickens. CONCLUSION: Supranutrition of dietary calcidiol and DHA alone or together did not produce adverse effects, but led to moderate improvements of growth performance, lipid profiles of plasma and muscle, and bone properties of broiler chickens.

17.
Appl Environ Microbiol ; 78(8): 2858-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307290

RESUMO

Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.


Assuntos
Bactérias Aeróbias/classificação , Bactérias Aeróbias/isolamento & purificação , Biodiversidade , Variação Genética , Processos Fototróficos , Água do Mar/microbiologia , Aerobiose , Bactérias Aeróbias/metabolismo , Bactérias Aeróbias/fisiologia , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Oceano Pacífico , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Análise de Sequência de DNA
18.
Environ Sci Technol ; 46(19): 10842-8, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22920714

RESUMO

The industrial-scale production of biofuels from cultivated microalgae has gained considerable interest in the last several decades. While the climate benefits of microalgae cultivation that result from the capture of atmospheric CO(2) are known, the counteracting effect from the potential emission of other greenhouse gases has not been well quantified. Here, we report the results of a study conducted at an industrial pilot facility in Hawaii to determine the air-water fluxes of N(2)O and CH(4) from open raceway ponds used to grow the marine diatom Staurosira sp. as a feedstock for biofuel. Dissolved O(2), CH(4), and N(2)O concentrations were measured over a 24 h cycle. During this time, four SF(6) tracer release experiments were conducted to quantify gas transfer velocities in the ponds, and these were then used to calculate air-water fluxes. Our results show that pond waters were consistently supersaturated with CH(4) (up to 725%) resulting in an average emission of 19.9 ± 5.6 µmol CH(4) m(-2) d(-1). Upon NO(3)(-) depletion, the pond shifted from being a source to being a sink of N(2)O, with an overall net uptake during the experimental period of 3.4 ± 3.5 µmol N(2)O m(-2) d(-1). The air-water fluxes of N(2)O and CH(4) expressed as CO(2) equivalents of global warming potential were 2 orders of magnitude smaller than the overall CO(2) uptake by the microalgae.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Metano/análise , Microalgas , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Biocombustíveis , Dióxido de Carbono/farmacocinética , Diatomáceas/metabolismo , Havaí , Microalgas/metabolismo , Lagoas
19.
Front Microbiol ; 13: 906864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685928

RESUMO

While planktonic microbes play key roles in the coastal oceans, our understanding of heterotrophic microeukaryotes' ecology, particularly their spatiotemporal patterns, drivers, and functions, remains incomplete. In this study, we focus on a ubiquitous marine fungus-like protistan group, the Labyrinthulomycetes, whose biomass can exceed that of bacterioplankton in coastal oceans but whose ecology is largely unknown. Using quantitative PCR and amplicon sequencing of their 18S rRNA genes, we examine their community variation in repeated five-station transects across the nearshore-to-offshore surface waters of North Carolina, United States. Their total 18S rRNA gene abundance and phylotype richness decrease significantly from the resource-rich nearshore to the oligotrophic offshore waters, but their Pielou's community evenness appears to increase offshore. Similar to the bacteria and fungi, the Labyrinthulomycete communities are significantly structured by distance from shore, water temperature, and other environmental factors, suggesting potential niche partitioning. Nevertheless, only several Labyrinthulomycete phylotypes, which belong to aplanochytrids, thraustochytrids, or unclassified Labyrinthulomycetes, are prevalent and correlated with cohesive bacterial communities, while more phylotypes are patchy and often co-occur with fungi. Overall, these results complement previous time-series observations that resolve the Labyrinthulomycetes as persistent and short-blooming ecotypes with distinct seasonal preferences, further revealing their partitioning spatial patterns and multifaceted roles in coastal marine microbial food webs.

20.
Microbiol Spectr ; 10(3): e0014422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35502912

RESUMO

Labyrinthulomycetes protists are an important heterotrophic component of microeukaryotes in the world's oceans, but their distribution patterns and ecological roles are poorly understood in pelagic waters. This study employed flow cytometry and high-throughput sequencing to characterize the abundance, diversity, and community structure of Labyrinthulomycetes in the pelagic Eastern Indian Ocean. The total Labyrinthulomycetes abundance varied much more among stations than did the abundance of prokaryotic plankton, reaching over 1,000 cells mL-1 at a few "bloom" stations. The total Labyrinthulomycetes abundance did not decline with depth throughout the whole water column (5 to 2,000 m) like the abundance of prokaryotic plankton did, and the Labyrinthulomycetes average projected biomass over all samples was higher than that of the prokaryotic plankton. However, Labyrinthulomycetes diversity showed obvious vertical variations, with richness, Shannon diversity, and evenness greatest in the upper epipelagic, lower epipelagic, and deep waters, respectively. Many abundant phylotypes were detected across multiple water layers, which aligned with the constant vertical Labyrinthulomycetes biomass, suggesting potential sinking and contribution to the biological pump. Hierarchical clustering revealed distinct ecotypes partitioning by vertical distribution patterns, suggesting their differential roles in the carbon cycle and storage processes. Particularly, most phylotypes showed patchy distributions (occurring in only few samples) as previously found in the coastal waters, but they were less associated with the Labyrinthulomycetes blooms than the prevalent phylotypes. Overall, this study revealed distinct patterns of Labyrinthulomycetes ecotypes and shed light on their importance in the pelagic ocean carbon cycling and sequestration relative to that of the prokaryotic plankton. IMPORTANCE While prokaryotic heterotrophic plankton are well accepted as major players in oceanic carbon cycling, the ecological distributions and functions of their microeukaryotic counterparts in the pelagic ocean remain largely unknown. This study focused on an important group of heterotrophic (mainly osmotrophic) protistan microbes, the Labyrinthulomycetes, whose biomass can surpass that of the prokaryotic plankton in many marine ecosystems, including the bathypelagic ocean. We found patchy horizontal but persistent vertical abundance profiles of the Labyrinthulomycetes protists in the pelagic waters of the Eastern Indian Ocean, which were distinct from the spatial patterns of the prokaryotic plankton. Moreover, multiple Labyrinthulomycetes ecotypes with distinct vertical patterns were detected and, based on the physiologic, metabolic, and genomic understanding of their cultivated relatives, were inferred to play multifaceted key roles in the carbon cycle and sequestration, particularly as contributors to the vertical carbon export from the surface to the dark ocean, i.e., the biological pump.


Assuntos
Carbono , Ecossistema , Carbono/metabolismo , Ecótipo , Eucariotos , Oceano Índico , Proteínas de Membrana Transportadoras/genética , Oceanos e Mares , Plâncton/genética , Plâncton/metabolismo , Água do Mar , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA