Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503814

RESUMO

In addition to their classical roles as bacterial sensors, NOD1 and NOD2 have been implicated as mediators of metabolic disease. Increased expression of NOD1 and/or NOD2 has been reported in a range of human metabolic diseases, including obesity, diabetes, non-alcoholic fatty liver disease, and metabolic syndrome. Although NOD1 and NOD2 share intracellular signaling pathway components, they are differentially upregulated on a cellular level and have opposing impacts on metabolic disease development in mouse models. These NOD-like receptors may directly mediate signaling downstream of cell stressors, such as endoplasmic reticulum stress and calcium influx, or in response to metabolic signals, such as fatty acids and glucose. Other studies suggest that stimulation of NOD1 or NOD2 by their bacterial ligands can result in inflammation, altered insulin responses, increased reactive oxygen signaling, and mitochondrial dysfunction. The activating stimuli for NOD1 and NOD2 in the context of metabolic disease are controversial and may be a combination of both metabolic and circulating bacterial ligands. In this review, we will summarize the current knowledge of how NOD1 and NOD2 may mediate metabolism in health and disease, as well as highlight areas of future investigation.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais , Animais , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Estresse Fisiológico
2.
NPJ Biofilms Microbiomes ; 7(1): 56, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215744

RESUMO

Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multidrug-resistant human pathogens. Here, we characterize a biological function of APEs, focusing on the BGC from a uropathogenic Escherichia coli (UPEC) strain. We first perform a genetic deletion analysis to identify the essential genes required for APE biosynthesis. Next, we show that APEs function as fitness factors that increase protection from oxidative stress and contribute to biofilm formation. Together, our study highlights key steps in the APE biosynthesis pathway that can be explored as potential drug targets for complementary strategies to reduce fitness and prevent biofilm formation of multi-drug resistant pathogens.


Assuntos
Biofilmes , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Essenciais , Polienos/metabolismo , Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Mutação , Oxirredução , Fenótipo , Polienos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA