Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(25): 5577-5588, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34085692

RESUMO

Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl ß-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.


Assuntos
Lipopeptídeos
2.
Front Microbiol ; 11: 578878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042096

RESUMO

Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA