Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Environ Sci Technol ; 58(19): 8278-8288, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697947

RESUMO

Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (PODp25BMCh) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive PODp25BMCh for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these PODp25BMCh, we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.


Assuntos
Exposição por Inalação , Reprodução , Humanos , Reprodução/efeitos dos fármacos , Medição de Risco
2.
Environ Sci Technol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693844

RESUMO

Chemical points of departure (PODs) for critical health effects are crucial for evaluating and managing human health risks and impacts from exposure. However, PODs are unavailable for most chemicals in commerce due to a lack of in vivo toxicity data. We therefore developed a two-stage machine learning (ML) framework to predict human-equivalent PODs for oral exposure to organic chemicals based on chemical structure. Utilizing ML-based predictions for structural/physical/chemical/toxicological properties from OPERA 2.9 as features (Stage 1), ML models using random forest regression were trained with human-equivalent PODs derived from in vivo data sets for general noncancer effects (n = 1,791) and reproductive/developmental effects (n = 2,228), with robust cross-validation for feature selection and estimating generalization errors (Stage 2). These two-stage models accurately predicted PODs for both effect categories with cross-validation-based root-mean-squared errors less than an order of magnitude. We then applied one or both models to 34,046 chemicals expected to be in the environment, revealing several thousand chemicals of moderate concern and several hundred chemicals of high concern for health effects at estimated median population exposure levels. Further application can expand by orders of magnitude the coverage of organic chemicals that can be evaluated for their human health risks and impacts.

3.
Eur J Nutr ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622295

RESUMO

PURPOSE: This study aimed to estimate the health, economic, and environmental impacts of moderate simulated interventions on dietary intake in Brazil. METHODS: Data on food price and consumption were obtained from three nationwide surveys. Baseline dietary intake was estimated for 33,859 individuals aged 25 years and older. Counterfactual intakes were based on six hypothetical intervention scenarios, by changing the weekly frequency and serving size in low or high consumers of fruit and vegetables (FV), milk, whole grains, red and processed meats, and sugar-sweetened beverages. For each scenario, we estimated the attributable number of deaths and disability-adjusted life years (DALY), monetary cost, environmental impacts (14 midpoint indicators), and environmentally-mediated health impacts. RESULTS: Compared with the baseline intake and cost, the most expensive intervention (+ 8.3%) was to increase FV intake (+ 125 g), resulting in a 1.2% reduction in all-cause mortality (16,307 deaths/year). The cheapest (- 9.9%) was to reduce red and processed meat intake (- 40 g), resulting in a 1.1% reduction in all-cause mortality (14,272 deaths/year). The combined intervention was, on average, 3.7% cheaper than the baseline cost, resulting in an increase in diet cost for 30% of the population (45-22% in the lower- and higher-income groups); all-cause mortality would be reduced by 3.8% (49,488 deaths/year). Interventions targeting red and processed meats would reduce emissions and resource use by 35-55%, in addition to reducing 2300 DALYs/year. CONCLUSION: A meaningful number of deaths can be avoided and environmental impacts reduced through moderate and potentially affordable diet modifications.

4.
Environ Sci Technol ; 57(32): 11738-11749, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490771

RESUMO

Occupational injuries and illnesses are major risk factors for human health impacts worldwide, but they have not been consistently nor comprehensively considered in life cycle impact assessment (LCIA) methods. In this study, we quantified occupational health impacts as disability-adjusted life years (DALYs) for nonfatal injuries and illnesses in all US industries. We further applied an economic input-output model of the US economy to develop a new data set of characterization factors (CFs) that links direct and indirect occupational health impacts to product life cycle final demand. We found that the CF data set varies significantly by industry, ranging from 6.1 to 298 DALYs per billion dollars. About 20% of final demand in the US economic system contributes nearly 50% of the total impacts of occupational health, suggesting occupational health impacts are concentrated in a small portion of industries. To verify the feasibility of the CFs and demonstrate their importance, we included a case of an office chair. The occupational health impacts caused by nonfatal injuries and illnesses during the production of an office chair are of the same order of magnitude as those caused by chemical emissions across the chair's life cycle, with 1.1 × 10-5 and 1.4 × 10-5 DALYs per chair, respectively. Results and data sets derived from this study support the integration of occupational health impacts with LCIA methods.


Assuntos
Saúde Ocupacional , Humanos , Indústrias , Fatores de Risco
5.
Environ Sci Technol ; 57(46): 18259-18270, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37914529

RESUMO

Machine Learning (ML) is increasingly applied to fill data gaps in assessments to quantify impacts associated with chemical emissions and chemicals in products. However, the systematic application of ML-based approaches to fill chemical data gaps is still limited, and their potential for addressing a wide range of chemicals is unknown. We prioritized chemical-related parameters for chemical toxicity characterization to inform ML model development based on two criteria: (1) each parameter's relevance to robustly characterize chemical toxicity described by the uncertainty in characterization results attributable to each parameter and (2) the potential for ML-based approaches to predict parameter values for a wide range of chemicals described by the availability of chemicals with measured parameter data. We prioritized 13 out of 38 parameters for developing ML-based approaches, while flagging another nine with critical data gaps. For all prioritized parameters, we performed a chemical space analysis to assess further the potential for ML-based approaches to predict data for diverse chemicals considering the structural diversity of available measured data, showing that ML-based approaches can potentially predict 8-46% of marketed chemicals based on 1-10% with available measured data. Our results can systematically inform future ML model development efforts to address data gaps in chemical toxicity characterization.


Assuntos
Aprendizado de Máquina , Humanos , Medição de Risco
6.
Gastrointest Endosc ; 96(6): 1002-1008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35718068

RESUMO

BACKGROUND AND AIMS: The large-scale effects of duodenoscopes on the environment and public health have not been quantified. Our aim was to perform an exploratory life cycle assessment comparing environmental and human health effects of single-use duodenoscopes (SDs) and reusable duodenoscopes (RDs). METHODS: We evaluated 3 duodenoscopes: conventional RDs, RDs with disposable endcaps, and SDs. The primary outcomes were impacts on climate change and human health, complemented by multiple environmental impacts. RESULTS: Performing ERCP with SDs releases between 36.3 and 71.5 kg of CO2 equivalent, which is 24 to 47 times greater than using an RD (1.53 kg CO2) or an RD with disposable endcaps (1.54 kg CO2). Most of the impact of SDs comes from its manufacturing, which accounts for 91% to 96% of its greenhouse gas emission. The human health impact of RDs becomes comparable with the SD lower bound if disposable endcaps or other design modifications can reduce serious infection rates below a target rate of 23 cases per year (.0046%). CONCLUSIONS: Although SDs may provide incremental public health benefit compared with RDs, it comes at a substantially higher cost to the environment. As infection rates continue to decrease from more regimented cleaning protocols and enhanced designs such as disposable endcaps to facilitate cleaning, the negative impact to human health from contaminated RDs could be comparable with SDs.


Assuntos
Dióxido de Carbono , Duodenoscópios , Humanos , Avaliação de Resultados em Cuidados de Saúde
7.
Environ Sci Technol ; 55(1): 25-43, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33319994

RESUMO

A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos Voláteis/análise
8.
Risk Anal ; 41(4): 627-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073419

RESUMO

The ubiquitous presence of more than 80,000 chemicals in thousands of consumer products used on a daily basis stresses the need for screening a broader set of chemicals than the traditional well-studied suspect chemicals. This high-throughput screening combines stochastic chemical-product usage with mass balance-based exposure models and toxicity data to prioritize risks associated with household products. We first characterize product usage using the stochastic SHEDS-HT model and chemical content in common household products from the CPDat database, the chemical amounts applied daily varying over more than six orders of magnitude, from mg to kg. We then estimate multi-pathways near- and far-field exposures for 5,500 chemical-product combinations, applying an extended USEtox model to calculate product intake fractions ranging from 0.001 to ∼1, and exposure doses varying over more than nine orders of magnitude. Combining exposure doses with chemical-specific dose-responses and reference doses shows that risks can be substantial for multiple home maintenance products, such as paints or paint strippers, for some home-applied pesticides, leave-on personal care products, and cleaning products. Sixty percent of the chemical-product combinations have hazard quotients exceeding 1, and 9% of the combinations have lifetime cancer risks exceeding 10-4 . Population-level impacts of household products ingredients can be substantial, representing 5 to 100 minutes of healthy life lost per day, with users' exposures up to 103 minutes per day. To address this issue, present mass balance-based models are already able to provide exposure estimates for both users and populations. This screening study shows large variations of up to 10 orders of magnitude in impact across both chemicals and product combinations, demonstrating that prioritization based on hazard only is not acceptable, since it would neglect orders of magnitude variations in both product usage and exposure that need to be quantified. To address this, the USEtox suite of mass balance-based models is already able to provide exposure estimates for thousands of product-chemical combinations for both users and populations. The present study calls for more scrutiny of most impacting chemical-product combinations, fully ensuring from a regulatory perspective consumer product safety for high-end users and using protective measures for users.


Assuntos
Cosméticos/análise , Exposição Ambiental/análise , Neoplasias/etiologia , Medição de Risco/métodos , Carcinógenos , Humanos , Modelos Estatísticos , Neoplasias/prevenção & controle , Praguicidas , Eliminação de Resíduos , Processos Estocásticos , Compostos Orgânicos Voláteis , Eliminação de Resíduos Líquidos , Purificação da Água
9.
Int J Life Cycle Assess ; 26(5): 899-915, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34140756

RESUMO

PURPOSE: Reducing chemical pressure on human and environmental health is an integral part of the global sustainability agenda. Guidelines for deriving globally applicable, life cycle based indicators are required to consistently quantify toxicity impacts from chemical emissions as well as from chemicals in consumer products. In response, we elaborate the methodological framework and present recommendations for advancing near-field/far-field exposure and toxicity characterization, and for implementing these recommendations in the scientific consensus model USEtox. METHODS: An expert taskforce was convened by the Life Cycle Initiative hosted by UN Environment to expand existing guidance for evaluating human toxicity impacts from exposure to chemical substances. This taskforce evaluated advances since the original release of USEtox. Based on these advances, the taskforce identified two major aspects that required refinement, namely integrating near-field and far-field exposure and improving human dose-response modeling. Dedicated efforts have led to a set of recommendations to address these aspects in an update of USEtox, while ensuring consistency with the boundary conditions for characterizing life cycle toxicity impacts and being aligned with recommendations from agencies that regulate chemical exposure. The proposed framework was finally tested in an illustrative rice production and consumption case study. RESULTS AND DISCUSSION: On the exposure side, a matrix system is proposed and recommended to integrate far-field exposure from environmental emissions with near-field exposure from chemicals in various consumer product types. Consumer exposure is addressed via submodels for each product type to account for product characteristics and exposure settings. Case study results illustrate that product-use related exposure dominates overall life cycle exposure. On the effect side, a probabilistic dose-response approach combined with a decision tree for identifying reliable points of departure is proposed for non-cancer effects, following recent guidance from the World Health Organization. This approach allows for explicitly considering both uncertainty and human variability in effect factors. Factors reflecting disease severity are proposed to distinguish cancer from non-cancer effects, and within the latter discriminate reproductive/developmental and other non-cancer effects. All proposed aspects have been consistently implemented into the original USEtox framework. CONCLUSIONS: The recommended methodological advancements address several key limitations in earlier approaches. Next steps are to test the new characterization framework in additional case studies and to close remaining research gaps. Our framework is applicable for evaluating chemical emissions and product-related exposure in life cycle assessment, chemical alternatives assessment and chemical substitution, consumer exposure and risk screening, and high-throughput chemical prioritization.

10.
Environ Sci Technol ; 53(12): 6855-6868, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31132267

RESUMO

We evaluate fine particulate matter (PM2.5) exposure-response models to propose a consistent set of global effect factors for product and policy assessments across spatial scales and across urban and rural environments. Relationships among exposure concentrations and PM2.5-attributable health effects largely depend on location, population density, and mortality rates. Existing effect factors build mostly on an essentially linear exposure-response function with coefficients from the American Cancer Society study. In contrast, the Global Burden of Disease analysis offers a nonlinear integrated exposure-response (IER) model with coefficients derived from numerous epidemiological studies covering a wide range of exposure concentrations. We explore the IER, additionally provide a simplified regression as a function of PM2.5 level, mortality rates, and severity, and compare results with effect factors derived from the recently published global exposure mortality model (GEMM). Uncertainty in effect factors is dominated by the exposure-response shape, background mortality, and geographic variability. Our central IER-based effect factor estimates for different regions do not differ substantially from previous estimates. However, IER estimates exhibit significant variability between locations as well as between urban and rural environments, driven primarily by variability in PM2.5 concentrations and mortality rates. Using the IER as the basis for effect factors presents a consistent picture of global PM2.5-related effects for use in product and policy assessment frameworks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado
11.
Environ Sci Technol ; 53(2): 719-732, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30516957

RESUMO

Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate exposure from limited information. In this study, chemical structure and physicochemical properties were used to predict the probability that a chemical might be associated with any of four exposure pathways leading from sources-consumer (near-field), dietary, far-field industrial, and far-field pesticide-to the general population. The balanced accuracies of these source-based exposure pathway models range from 73 to 81%, with the error rate for identifying positive chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 13 different exposure models as well as other predictors of human intake rates. We created a consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which the predictors of exposure were combined by pathway and weighted according to predictive ability for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure information. This approach identifies 1880 chemicals for which the median population intake rates may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate is below 1 µg/kg BW/day for 474572 compounds.


Assuntos
Exposição Ambiental , Praguicidas , Consenso , Dieta , Monitoramento Ambiental , Humanos , Medição de Risco
12.
Indoor Air ; 29(1): 79-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295963

RESUMO

The material-air partition coefficient (Kma ) is a key parameter to estimate the release of chemicals incorporated in solid materials and resulting human exposures. Existing correlations to estimate Kma are applicable for a limited number of chemical-material combinations without considering the effect of temperature. The present study develops a quantitative structure-property relationship (QSPR) to predict Kma for a large number of chemical-material combinations. We compiled a dataset of 991 measured Kma for 179 chemicals in 22 consolidated material types. A multiple linear regression model predicts Kma as a function of chemical's Koa , enthalpy of vaporization (∆Hv ), temperature, and material type. The model shows good fitting of the experimental dataset with adjusted R2 of 0.93 and has been verified by internal and external validations to be robust, stable and has good predicting ability ( Rext2  > 0.78). A generic QSPR is also developed to predict Kma from chemical properties and temperature only (adjusted R2  = 0.84), without the need to assign a specific material type. These QSPRs provide correlation methods to estimate Kma for a wide range of organic chemicals and materials, which will facilitate high-throughput estimates of human exposures for chemicals in solid materials, particularly building materials and furniture.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Modelos Químicos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Poluentes Atmosféricos/análise , Humanos , Modelos Lineares , Ciência dos Materiais/métodos
13.
Int J Life Cycle Assess ; 24(6): 1009-1026, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632341

RESUMO

PURPOSE: There do not currently exist scientifically defensible ways to consistently characterize the human exposures (via various pathways) to near-field chemical emissions and associated health impacts during the use stage of building materials. The present paper thus intends to provide a roadmap which summarizes the current status and guides future development for integrating into LCA the chemical exposures and health impacts on various users of building materials, with a focus on building occupants. METHODS: We first review potential human health impacts associated with the substances in building materials and the methods used to mitigate these impacts, also identifying several of the most important online data resources. A brief overview of the necessary steps for characterizing use stage chemical exposures and health impacts for building materials is then provided. Finally, we propose a systematic approach to integrate the use stage exposures and health impacts into building material LCA and describe its components, and then present a case study illustrating the application of the proposed approach to two representative chemicals: formaldehyde and methylene diphenyl diisocyanate (MDI) in particleboard products. RESULTS AND DISCUSSION: Our proposed approach builds on the coupled near-field and far-field framework proposed by Fantke et al. (Environ Int 94:508-518, 2016), which is based on the product intake fraction (PiF) metric proposed by Jolliet et al. (Environ Sci Technol 49:8924-8931, 2015), The proposed approach consists of three major components: characterization of product usage and chemical content, human exposures, and toxicity, for which available methods and data sources are reviewed and research gaps are identified. The case study illustrates the difference in dominant exposure pathways between formaldehyde and MDI and also highlights the impact of timing and use duration (e.g., the initial 50 days of the use stage vs. the remaining 15 years) on the exposures and health impacts for the building occupants. CONCLUSIONS: The proposed approach thus provides the methodological basis for integrating into LCA the human health impacts associated with chemical exposures during the use stage of building materials. Data and modeling gaps which currently prohibit the application of the proposed systematic approach are discussed, including the need for chemical composition data, exposure models, and toxicity data. Research areas that are not currently focused on are also discussed, such as worker exposures and complex materials. Finally, future directions for integrating the use stage impacts of building materials into decision making in a tiered approach are discussed.

14.
Int J Life Cycle Assess ; 24(5): 856-865, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122880

RESUMO

PURPOSE: Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and validity still faces multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a dedicated cross-cutting working group on regionalized LCIA aims to provides an overview of the status of regionalization in LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of LCIA methods, LCI databases, and LCA software. METHOD: A survey of current practice among regionalized LCIA method developers was conducted. The survey included questions on chosen method spatial resolution and scale, the spatial resolution of input parameters, choice of native spatial resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the assessment of uncertainty from input parameters and model structure, and variability due to spatial aggregation. Recommendations are formulated based on the survey results and extensive discussion by the authors. RESULTS AND DISCUSSION: Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial resolutions are generally chosen based on the availability of global input data. Annual modelled or measured elementary flow quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter, model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially differentiated models CFs are not easily available, archetype models are sometimes developed. CONCLUSIONS: Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs, aggregated CFs should always be provided, and should be calculated as the weighted averages of constituent CFs using annual flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency and robustness in the development and application of regionalized LCIA methods.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29263062

RESUMO

Environmental antibiotic risk management requires an understanding of how subinhibitory antibiotic concentrations contribute to the spread of resistance. We develop a simple model of competition between sensitive and resistant bacterial strains to predict the minimum selection concentration (MSC), the lowest level of antibiotic at which resistant bacteria are selected. We present an analytical solution for the MSC based on the routinely measured MIC, the selection coefficient (sc) that expresses fitness differences between strains, the intrinsic net growth rate, and the shape of the bacterial growth dose-response curve with antibiotic or metal exposure (the Hill coefficient [κ]). We calibrated the model by optimizing the Hill coefficient to fit previously reported experimental growth rate difference data. The model fit varied among nine compound-taxon combinations examined but predicted the experimentally observed MSC/MIC ratio well (R2 ≥ 0.95). The shape of the antibiotic response curve varied among compounds (0.7 ≤ κ ≤ 10.5), with the steepest curve being found for the aminoglycosides streptomycin and kanamycin. The model was sensitive to this antibiotic response curve shape and to the sc, indicating the importance of fitness differences between strains for determining the MSC. The MSC can be >1 order of magnitude lower than the MIC, typically by the factor scκ This study provides an initial quantitative depiction and a framework for a research agenda to examine the growing evidence of selection for resistant bacterial communities at low environmental antibiotic concentrations.


Assuntos
Modelos Teóricos , Antibacterianos , Farmacorresistência Bacteriana , Microbiologia Ambiental , Testes de Sensibilidade Microbiana
16.
Environ Sci Technol ; 52(2): 701-711, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29249158

RESUMO

Exposure studies, used in human health risk and impact assessments of chemicals, are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea, an innovative multiscale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties are expressed as the evolution of the population intake fraction through inhalation and ingestion as a function of the distance from sources. For substances with atmospheric half-lives longer than a week, less than 20% of the global population intake through inhalation (median of 126 emission scenarios) can occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ∼10 000 emission locations covering France more densely to determine per chemical and exposure route which locations minimize global intakes. Maps of global intake fractions associated with each emission location show clear patterns associated with population and agriculture production densities.


Assuntos
Exposição Ambiental , Modelos Teóricos , França , Humanos
17.
Environ Sci Technol ; 51(4): 2382-2391, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28068477

RESUMO

This paper addresses water use impacts of agriculture, developing a spatially explicit approach tracing the location of water use and water scarcity related to feed production, transport, and livestock, tracking uncertainties and illustrating the approach with a case study on dairy production in the United States. This approach was developed as a step to bring spatially variable production and impacts into a process-based life cycle assessment (LCA) context. As water resources and demands are spatially variable, it is critical to take into account the location of activities to properly understand the impacts of water use, accounting for each of the main feeds for milk production. At the crop production level, the example of corn grain shows that 59% of water stress associated with corn grain production in the United States is located in Nebraska, a state with moderate water stress and moderate corn production (11%). At the level of milk production, four watersheds account for 78% of the national water stress impact, as these areas have high milk production and relatively high water stress; it is the production of local silage and hay crops that drives water consumption in these areas. By considering uncertainty in both inventory data and impact characterization factors, we demonstrate that spatial variability may be larger than uncertainty, and that not systematically accounting for the two can lead to artificially high uncertainty. Using a nonspatial approach in a spatially variable setting can result in a significant underestimation or overestimation of water impacts. The approach demonstrated here could be applied to other spatially variable processes.


Assuntos
Leite , Água , Animais , Produtos Agrícolas , Silagem , Incerteza , Zea mays
18.
Environ Sci Technol ; 51(16): 9089-9100, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28682605

RESUMO

Exposure to fine particulate matter (PM2.5) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide a set of consistent primary PM2.5 aggregated exposure factors. We followed a matrix-based mass balance approach for quantifying exposure from indoor and ground-level urban and rural outdoor sources using an effective indoor-outdoor population intake fraction and a system of archetypes to represent different levels of spatial detail. Emission-to-exposure archetypes range from global indoor and outdoor averages, via archetypal urban and indoor settings, to 3646 real-world cities in 16 parametrized subcontinental regions. Population intake fractions from urban and rural outdoor sources are lowest in Northern regions and Oceania and highest in Southeast Asia with population-weighted means across 3646 cities and 16 subcontinental regions of, respectively, 39 ppm (95% confidence interval: 4.3-160 ppm) and 2 ppm (95% confidence interval: 0.2-6.3 ppm). Intake fractions from residential and occupational indoor sources range from 470 ppm to 62 000 ppm, mainly as a function of air exchange rate and occupancy. Indoor exposure typically contributes 80-90% to overall exposure from outdoor sources. Our framework facilitates improvements in air pollution reduction strategies and life cycle impact assessments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Material Particulado , Poluição do Ar , Cidades , Monitoramento Ambiental , Humanos , Tamanho da Partícula
19.
J Clean Prod ; 161: 957-967, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32461713

RESUMO

Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Initiative. As part of these efforts, a dedicated task force focused on addressing several LCIA cross-cutting issues as aspects spanning several impact categories, including spatiotemporal aspects, reference states, normalization and weighting, and uncertainty assessment. Here, findings of the cross-cutting issues task force are presented along with an update of the existing UNEP-SETAC LCIA emission-to-damage framework. Specific recommendations are provided with respect to metrics for human health (Disability Adjusted Life Years, DALY) and ecosystem quality (Potentially Disappeared Fraction of species, PDF). Additionally, we stress the importance of transparent reporting of characterization models, reference states, and assumptions, in order to facilitate cross-comparison between chosen methods and indicators. We recommend developing spatially regionalized characterization models, whenever the nature of impacts shows spatial variability and related spatial data are available. Standard formats should be used for reporting spatially differentiated models, and choices regarding spatiotemporal scales should be clearly communicated. For normalization, we recommend using external normalization references. Over the next two years, the task force will continue its effort with a focus on providing guidance for LCA practitioners on how to use the UNEP-SETAC LCIA framework as well as for method developers on how to consistently extend and further improve this framework.

20.
Environ Sci Technol ; 50(23): 13105-13114, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27794595

RESUMO

This article presents an innovative approach to include occupational exposures to organic chemicals in life cycle impact assessment (LCIA) by building on the characterization factors set out in Kijko et al. (2015) to calculate the potential impact of occupational exposure over the entire supply chain of product or service. Based on an economic input-output model and labor and economic data, the total impacts per dollar of production are provided for 430 commodity categories and range from 0.025 to 6.6 disability-adjusted life years (DALY) per million dollar of final economic demand. The approach is applied on a case study assessing human health impacts over the life cycle of a piece of office furniture. It illustrates how to combine monitoring data collected at the manufacturing facility and averaged sector specific data to model the entire supply chain. This paper makes the inclusion of occupational exposure to chemicals fully compatible with the LCA framework by including the supply chain of a given production process and will help industries focus on the leading causes of human health impacts and prevent impact shifting.


Assuntos
Saúde Ocupacional , Compostos Orgânicos , Humanos , Indústrias , Modelos Teóricos , Exposição Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA