Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Mol Genet ; 29(15): 2568-2578, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32667670

RESUMO

Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.


Assuntos
Códon sem Sentido/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Distúrbios da Fala/genética , Linhagem Celular , Pré-Escolar , Redes Reguladoras de Genes/genética , Humanos , Lactente , Mutação com Perda de Função/genética , Masculino , Transtornos do Neurodesenvolvimento/patologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , Splicing de RNA/genética , Mutação Silenciosa/genética , Distúrbios da Fala/patologia
2.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083290

RESUMO

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genética
3.
Cereb Cortex ; 31(3): 1763-1775, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188399

RESUMO

Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Neurogênese/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout
4.
Hum Mutat ; 42(8): 1030-1041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082468

RESUMO

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.


Assuntos
Caderinas , Epilepsia , Caderinas/genética , Humanos , Mutação de Sentido Incorreto , Protocaderinas , Análise de Sequência de DNA
5.
Neurobiol Dis ; 116: 106-119, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763708

RESUMO

PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.


Assuntos
Caderinas/biossíntese , Epilepsia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Caderinas/genética , Células Cultivadas , Análise por Conglomerados , Epilepsia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neurais/patologia , Protocaderinas
6.
Am J Hum Genet ; 97(2): 302-10, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166480

RESUMO

Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Cromossomos Humanos X/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de DNA , Síndrome
7.
J Hum Genet ; 63(9): 945-955, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29925960

RESUMO

Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.


Assuntos
Vetores Genéticos , Lentivirus , Linfócitos/citologia , Transdução Genética/métodos , Linhagem Celular , Feminino , Humanos , Masculino
8.
Hum Mol Genet ; 24(12): 3335-47, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740848

RESUMO

Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.


Assuntos
Encéfalo/citologia , Fator C1 de Célula Hospedeira/genética , Mutação , Células-Tronco Neurais/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/embriologia , Proteínas de Transporte/genética , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Expressão Gênica , Células HEK293 , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Células-Tronco Neurais/citologia , Oxirredutases , Linhagem , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução Genética
9.
Hum Mol Genet ; 24(7): 2000-10, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504045

RESUMO

We report siblings of consanguineous parents with an infantile-onset neurodegenerative disorder manifesting a predominant sensorimotor axonal neuropathy, optic atrophy and cognitive deficit. We used homozygosity mapping to identify an ∼12-Mbp interval identical by descent (IBD) between the affected individuals on chromosome 3q13.13-21.1 with an LOD score of 2.31. We combined family-based whole-exome and whole-genome sequencing of parents and affected siblings and, after filtering of likely non-pathogenic variants, identified a unique missense variant in syntaxin-binding protein 5-like (STXBP5L c.3127G>A, p.Val1043Ile [CCDS43137.1]) in the IBD interval. Considering other modes of inheritance, we also found compound heterozygous variants in FMNL3 (c.114G>C, p.Phe38Leu and c.1372T>G, p.Ile458Leu [CCDS44874.1]) located on chromosome 12. STXBP5L (or Tomosyn-2) is expressed in the central and peripheral nervous system and is known to inhibit neurotransmitter release through inhibition of the formation of the SNARE complexes between synaptic vesicles and the plasma membrane. FMNL3 is expressed more widely and is a formin family protein that is involved in the regulation of cell morphology and cytoskeletal organization. The STXBP5L p.Val1043Ile variant enhanced inhibition of exocytosis in comparison with wild-type (WT) STXBP5L. Furthermore, WT STXBP5L, but not variant STXBP5L, promoted axonal outgrowth in manipulated mouse primary hippocampal neurons. However, the FMNL3 p.Phe38Leu and p.Ile458Leu variants showed minimal effects in these cells. Collectively, our clinical, genetic and molecular data suggest that the IBD variant in STXBP5L is the likely cause of the disorder.


Assuntos
Proteínas de Transporte/genética , Homozigoto , Doenças do Recém-Nascido/genética , Mutação , Doenças Neurodegenerativas/genética , Proteínas Adaptadoras de Transporte Vesicular , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
10.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443594

RESUMO

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Assuntos
Antígenos Nucleares/genética , Deficiência Intelectual/genética , Proteínas de Ciclo Celular , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Comportamento Problema , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Am J Hum Genet ; 94(3): 470-8, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24607389

RESUMO

With a wealth of disease-associated DNA variants being recently reported, the challenges of providing their functional characterization are mounting. Previously, as part of a large systematic resequencing of the X chromosome in 208 unrelated families with nonsyndromic X-linked intellectual disability, we identified three unique variants (two missense and one protein truncating) in USP9X. To assess the functional significance of these variants, we took advantage of the Usp9x knockout mouse we generated. Loss of Usp9x causes reduction in both axonal growth and neuronal cell migration. Although overexpression of wild-type human USP9X rescued these defects, all three USP9X variants failed to rescue axonal growth, caused reduced USP9X protein localization in axonal growth cones, and (in 2/3 variants) failed to rescue neuronal cell migration. Interestingly, in one of these families, the proband was subsequently identified to have a microdeletion encompassing ARID1B, a known ID gene. Given our findings it is plausible that loss of function of both genes contributes to the individual's phenotype. This case highlights the complexity of the interpretations of genetic findings from genome-wide investigations. We also performed proteomics analysis of neurons from both the wild-type and Usp9x knockout embryos and identified disruption of the cytoskeleton as the main underlying consequence of the loss of Usp9x. Detailed clinical assessment of all three families with USP9X variants identified hypotonia and behavioral and morphological defects as common features in addition to ID. Together our data support involvement of all three USP9X variants in ID in these families and provide likely cellular and molecular mechanisms involved.


Assuntos
Cromossomos Humanos X , Deficiência Intelectual/genética , Mutação , Neurônios/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/fisiologia , Animais , Movimento Celular , Proliferação de Células , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Saúde da Família , Feminino , Genes Ligados ao Cromossomo X , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Neurogênese/genética , Fenótipo , Fatores de Tempo , Fatores de Transcrição/genética
12.
Cell Mol Life Sci ; 72(11): 2075-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25672900

RESUMO

Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate's ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an "all-or-none" phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X's pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson's and Alzheimer's disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Apoptose/genética , Doenças Autoimunes/genética , Polaridade Celular/genética , Drosophila/genética , Desenvolvimento Embrionário/genética , Humanos , Neoplasias/genética , Doenças Neurodegenerativas/genética , Neurogênese/genética , Transporte Proteico/genética , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
13.
Hum Mol Genet ; 22(23): 4673-87, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23821644

RESUMO

Loss-of-function mutations in UPF3B result in variable clinical presentations including intellectual disability (ID, syndromic and non-syndromic), autism, childhood onset schizophrenia and attention deficit hyperactivity disorder. UPF3B is a core member of the nonsense-mediated mRNA decay (NMD) pathway that functions to rapidly degrade transcripts with premature termination codons (PTCs). Traditionally identified in thousands of human diseases, PTCs were recently also found to be part of 'normal' genetic variation in human populations. Furthermore, many human transcripts have naturally occurring regulatory features compatible with 'endogenous' PTCs strongly suggesting roles of NMD beyond PTC mRNA control. In this study, we investigated the role of Upf3b and NMD in neural cells. We provide evidence that suggests Upf3b-dependent NMD (Upf3b-NMD) is regulated at multiple levels during development including regulation of expression and sub-cellular localization of Upf3b. Furthermore, complementary expression of Upf3b, Upf3a and Stau1 stratify the developing dorsal telencephalon, suggesting that alternative NMD, and the related Staufen1-mediated mRNA decay (SMD) pathways are differentially employed. A loss of Upf3b-NMD in neural progenitor cells (NPCs) resulted in the expansion of cell numbers at the expense of their differentiation. In primary hippocampal neurons, loss of Upf3b-NMD resulted in subtle neurite growth effects. Our data suggest that the cellular consequences of loss of Upf3b-NMD can be explained in-part by changes in expression of key NMD-feature containing transcripts, which are commonly deregulated also in patients with UPF3B mutations. Our research identifies novel pathological mechanisms of UPF3B mutations and at least partly explains the clinical phenotype of UPF3B patients.


Assuntos
Transtorno Autístico/genética , Deficiência Intelectual/genética , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Proteínas de Ligação a RNA/fisiologia , Esquizofrenia Infantil/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Neurogênese , Degradação do RNAm Mediada por Códon sem Sentido , Especificidade de Órgãos , Proteínas de Ligação a RNA/genética , Transdução de Sinais
14.
Am J Hum Genet ; 91(4): 694-702, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23000143

RESUMO

The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.


Assuntos
Fator C1 de Célula Hospedeira/genética , Deficiência Intelectual/genética , Mutação , RNA não Traduzido/genética , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Sítios de Ligação , Cromatina/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/genética , Cromossomo X/genética , Fator de Transcrição YY1/genética
15.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
16.
Biol Psychiatry ; 92(8): 614-625, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662507

RESUMO

Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas Ubiquitinadas , Enzimas Desubiquitinantes/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
17.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215978

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.


Assuntos
Encéfalo/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Encéfalo/embriologia , Encéfalo/virologia , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Microcefalia/patologia , Microcefalia/virologia , Neurônios/patologia , Neurônios/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-vav/metabolismo , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
18.
STAR Protoc ; 3(4): 101693, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36121748

RESUMO

Immunoprecipitation (IP) of endogenously expressed proteins is one of the most biologically relevant techniques to identify protein-protein interactions. We describe an adaptable IP protocol reliant on a specific antibody to the target protein. We detail a quantitative proteomics workflow for the unbiased identification of co-immunoprecipitating proteins, known collectively as an interactome. This includes protocols for the tryptic digestion, Tandem Mass Tag labeling and fractionation of peptides, and their identification and quantification using liquid chromatography-mass spectrometry including computational and statistical analysis. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2020).


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Linhagem Celular , Imunoprecipitação
19.
Mol Genet Metab Rep ; 29: 100811, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712574

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterised by a progressive neurological decline leading to early death. It is caused by bi-allelic loss-of-function mutations in SGSH encoding sulphamidase, a lysosomal enzyme required for heparan sulphate glycosaminoglycan (HS GAG) degradation, that results in the progressive build-up of HS GAGs in multiple tissues most notably the central nervous system (CNS). Skin fibroblasts from two MPS IIIA patients who presented with an intermediate and a severe clinical phenotype, respectively, were reprogrammed into induced pluripotent stem cells (iPSCs). The intermediate MPS IIIA iPSCs were then differentiated into neural progenitor cells (NPCs) and subsequently neurons. The patient derived fibroblasts, iPSCs, NPCs and neurons all displayed hallmark biochemical characteristics of MPS IIIA including reduced sulphamidase activity and increased accumulation of an MPS IIIA HS GAG biomarker. Proliferation of MPS IIIA iPSC-derived NPCs was reduced compared to control, but could be partially rescued by reintroducing functional sulphamidase enzyme, or by doubling the concentration of the mitogen fibroblast growth factor 2 (FGF2). Whilst both control heparin, and MPS IIIA HS GAGs had a similar binding affinity for FGF2, only the latter inhibited FGF signalling, suggesting accumulated MPS IIIA HS GAGs disrupt the FGF2:FGF2 receptor:HS signalling complex. Neuronal differentiation of MPS IIIA iPSC-derived NPCs was associated with a reduction in the expression of neuronal cell marker genes ßIII-TUBULIN, NF-H and NSE, revealing reduced neurogenesis compared to control. A similar result was achieved by adding MPS IIIA HS GAGs to the culture medium during neuronal differentiation of control iPSC-derived NPCs. This study demonstrates the generation of MPS IIIA iPSCs, and NPCs, the latter of which display reduced proliferation and neurogenic capacity. Reduced NPC proliferation can be explained by a model in which soluble MPS IIIA HS GAGs compete with cell surface HS for FGF2 binding. The mechanism driving reduced neurogenesis remains to be determined but appears downstream of MPS IIIA HS GAG accumulation.

20.
Neuron ; 105(3): 506-521.e7, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813652

RESUMO

Variants in the ANK3 gene encoding ankyrin-G are associated with neurodevelopmental disorders, including intellectual disability, autism, schizophrenia, and bipolar disorder. However, no upstream regulators of ankyrin-G at synapses are known. Here, we show that ankyrin-G interacts with Usp9X, a neurodevelopmental-disorder-associated deubiquitinase (DUB). Usp9X phosphorylation enhances their interaction, decreases ankyrin-G polyubiquitination, and stabilizes ankyrin-G to maintain dendritic spine development. In forebrain-specific Usp9X knockout mice (Usp9X-/Y), ankyrin-G as well as multiple ankyrin-repeat domain (ANKRD)-containing proteins are transiently reduced at 2 but recovered at 12 weeks postnatally. However, reduced cortical spine density in knockouts persists into adulthood. Usp9X-/Y mice display increase of ankyrin-G ubiquitination and aggregation and hyperactivity. USP9X mutations in patients with intellectual disability and autism ablate its catalytic activity or ankyrin-G interaction. Our data reveal a DUB-dependent mechanism of ANKRD protein homeostasis, the impairment of which only transiently affects ANKRD protein levels but leads to persistent neuronal, behavioral, and clinical abnormalities.


Assuntos
Repetição de Anquirina/fisiologia , Espinhas Dendríticas/fisiologia , Homeostase/fisiologia , Proteostase/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA