Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762450

RESUMO

Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.


Assuntos
Terapia por Acupuntura , Morfina , Humanos , Ratos , Animais , Ratos Wistar , Vibração/uso terapêutico , Interneurônios
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293482

RESUMO

Therapeutic activation of mechanoreceptors (MStim) in osteopathy, chiropractic and acupuncture has been in use for hundreds of years with a myriad of positive outcomes. It has been previously shown to modulate the firing rate of neurons in the ventral tegmental area (VTA) and dopamine (DA) release in the nucleus accumbens (NAc), an area of interest in alcohol-use disorder (AUD). In this study, we examined the effects of MStim on VTA GABA neuron firing rate, DA release in the NAc, and behavior during withdrawal from chronic EtOH exposure in a rat model. We demonstrate that concurrent administration of MStim and EtOH significantly reduced adaptations in VTA GABA neurons and DA release in response to a reinstatement dose of EtOH (2.5 g/kg). Behavioral indices of EtOH withdrawal (rearing, open-field crosses, tail stiffness, gait, and anxiety) were substantively ameliorated with concurrent application of MStim. Additionally, MStim significantly increased the overall frequency of ultrasonic vocalizations, suggesting an increased positive affective state.


Assuntos
Dopamina , Área Tegmentar Ventral , Ratos , Animais , Dopamina/farmacologia , Neurônios GABAérgicos , Etanol/farmacologia , Núcleo Accumbens
3.
Biochim Biophys Acta ; 1833(12): 2596-2607, 2013 12.
Artigo em Inglês | MEDLINE | ID: mdl-23830915

RESUMO

Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFß1 and TGFßRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFß protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFß stimulation alone. We have also demonstrated that the inhibition of the TGFß signalling pathway abrogated the strain induced changes in mRNA and that TGFß activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFß activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.


Assuntos
Proteínas da Matriz Extracelular/genética , Metaloproteases/genética , Estresse Mecânico , Tendões/citologia , Tendões/enzimologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Metaloproteases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/genética
4.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613458

RESUMO

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Nicotina/farmacologia , Ibogaína/farmacologia , Camundongos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Autoadministração , Xenopus laevis , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Relação Dose-Resposta a Droga , Atividade Motora/efeitos dos fármacos
6.
Int J Biochem Cell Biol ; 40(6-7): 1199-218, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18339575

RESUMO

Synovial (diarthrodial) joints are employed within the body to provide skeletal mobility and have a characteristic structure adapted to provide a smooth almost frictionless surface for articulation. Pathologies of the synovial joint are an important cause of patient morbidity and can affect each of the constituent tissues. A common feature of these pathologies is degenerative changes in the structure of the tissue which is mediated, at least in part, by proteolytic activity. Most tissues of the synovial joint are composed primarily of extracellular matrix and key pathological roles in the degeneration of this matrix are performed by metalloproteinases such as matrix metallproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS). However, other proteases such as cathepsin K are likely to play an important role, especially in bone turnover. In addition to the cleavage of structural proteins, proteolytic activities are employed to regulate the activity of other proteases, growth factors, cytokines and other inflammatory mediators. Proteases combine to form complex regulatory networks, the correct functioning of which is required for tissue homeostasis and the imbalance of which may be a feature of pathology. A precise understanding of the proteases involved in these networks is required for a true understanding of the associated pathology.


Assuntos
Articulações/patologia , Peptídeo Hidrolases/metabolismo , Membrana Sinovial/patologia , Humanos , Articulações/enzimologia , Articulações/metabolismo , Modelos Biológicos , Peptídeo Hidrolases/classificação , Membrana Sinovial/enzimologia , Membrana Sinovial/metabolismo
7.
Matrix Biol ; 27(5): 393-401, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18387286

RESUMO

Several members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family have been identified as aggrecanases, whose substrates include versican, the principal large proteoglycan in the tendon extracellular matrix. We have characterized the expression of ADAMTS-4 in human Achilles tendon and tendon-derived cells. ADAMTS-4 mRNA levels were higher in ruptured tendon compared with normal tendon or chronic painful tendinopathy. In tissue extracts probed by Western blotting, mature ADAMTS-4 (68 kDa) was detected only in ruptured tendons, while processed ADAMTS-4 (53 kDa) was detected also in chronic painful tendinopathy and in normal tendon. In cultured Achilles tendon cells, transforming growth factor-beta (TGF-beta) stimulated ADAMTS-4 mRNA expression (typically 20-fold after 24 h), while interleukin-1 induced a smaller, shorter-term stimulation which synergised markedly with that induced by TGF-beta. Increased levels of immunoreactive proteins consistent with mature and processed forms of ADAMTS-4 were detected in TGF-beta-stimulated cells. ADAMTS-4 mRNA was expressed at higher levels by tendon cells in collagen gels than in monolayer cultures. In contrast, the expression of ADAMTS-1 and -5 mRNA was lower in collagen gels compared with monolayers, and these mRNA showed smaller or opposite responses to growth factors and cytokines compared with that of ADAMTS-4 mRNA. We conclude that both ADAMTS-4 mRNA and ADAMTS-4 protein processing may be differentially regulated in normal and damaged tendons and that both the matrix environment and growth factors such as TGF-beta are potentially important factors controlling ADAMTS aggrecanase activities in tendon pathology.


Assuntos
Proteínas ADAM/genética , Tendão do Calcâneo/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Traumatismos dos Tendões/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS1 , Proteína ADAMTS4 , Proteína ADAMTS5 , Tendão do Calcâneo/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Proteínas Morfogenéticas Ósseas/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-1beta/farmacologia , Pessoa de Meia-Idade , Pró-Colágeno N-Endopeptidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
8.
Curr Pharm Biotechnol ; 7(1): 25-31, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16472131

RESUMO

ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases have been implicated in a number of connective tissue pathologies including Ehlers-Danlos syndrome type VII C, Weill-Marchesani syndrome, encephalomyelitis, and arthritis. These proteinases therefore represent potential therapeutic targets for the treatment of such conditions. The synthesis and activity of ADAMTS proteinases is regulated at multiple levels: transcription, RNA splicing, translation, proteolytic processing, cofactor stimulation and inhibition, each of which represents a possible point of therapeutic intervention. Recent research suggests that, in addition to the direct inhibition of ADAMTS proteinases with low molecular weight non-peptidic inhibitors, targeting the transcription and protein processing of these enzymes could be effective therapeutic approaches.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Doenças do Tecido Conjuntivo/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Animais , Doenças do Tecido Conjuntivo/enzimologia , Humanos , Inibidores de Proteases/farmacologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
9.
Methods Mol Biol ; 622: 83-98, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20135277

RESUMO

The "a disintegrin and metalloproteinase with thrombospondin motifs" (ADAMTS) enzymes are secreted proteinases involved in development, blood clotting and the turnover of extracellular matrix. Manufacturing recombinant enzyme presents quite a challenge due to the presence of disulphide bridges, the large size and modular structure. A sub-group of these enzymes are known as "aggrecanases" and it is likely that they are involved in a number of pathologies related to increased turnover of the extracellular matrix, particularly in tissues where the concentration of proteoglycans is high, such as cartilage and the central nervous system. We have expressed three of these enzymes, ADAMTS-1, -4 and -5, in insect cells using plasmid-based systems.


Assuntos
Proteínas ADAM/metabolismo , Insetos/citologia , Biologia Molecular/métodos , Proteínas Recombinantes/metabolismo , Proteínas ADAM/isolamento & purificação , Animais , Linhagem Celular , Vetores Genéticos/genética , Proteínas Recombinantes/isolamento & purificação , Transfecção
10.
Arthritis Rheum ; 54(3): 832-42, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16508964

RESUMO

OBJECTIVE: To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. METHODS: Tendon samples were obtained from cadavers or from patients undergoing surgical procedures to treat chronic painful tendinopathy or ruptured tendon. Total RNA was extracted and mRNA expression was analyzed by quantitative real-time reverse transcription-polymerase chain reaction, normalized to 18S ribosomal RNA. RESULTS: In comparing expression of all genes, the normal, painful, and ruptured Achilles tendon groups each had a distinct mRNA expression signature. Three mRNA were not detected and 14 showed no significant difference in expression levels between the groups. Statistically significant (P < 0.05) differences in mRNA expression, when adjusted for age, included lower levels of MMPs 3 and 10 and TIMP-3 and higher levels of ADAM-12 and MMP-23 in painful compared with normal tendons, and lower levels of MMPs 3 and 7 and TIMPs 2, 3, and 4 and higher levels of ADAMs 8 and 12, MMPs 1, 9, 19, and 25, and TIMP-1 in ruptured compared with normal tendons. CONCLUSION: The distinct mRNA profile of each tendon group suggests differences in extracellular proteolytic activity, which would affect the production and remodeling of the tendon extracellular matrix. Some proteolytic activities are implicated in the maintenance of normal tendon, while chronically painful tendons and ruptured tendons are shown to be distinct groups. These data will provide a foundation for further study of the role and activity of many of these enzymes that underlie the pathologic processes in the tendon.


Assuntos
Tendão do Calcâneo/enzimologia , Metaloproteases/análise , Inibidores Teciduais de Metaloproteinases/análise , Proteínas ADAM/análise , Tendão do Calcâneo/lesões , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/análise , Ruptura
11.
Arthritis Res Ther ; 7(4): 160-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15987500

RESUMO

Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family are known to influence development, angiogenesis, coagulation and progression of arthritis. As proteinases their substrates include the von Willebrand factor precursor and extracellular matrix components such as procollagen, hyalectans (hyaluronan-binding proteoglycans including aggrecan), decorin, fibromodulin and cartilage oligomeric matrix protein. ADAMTS levels and activities are regulated at multiple levels through the control of gene expression, mRNA splicing, protein processing and inhibition by TIMP (tissue inhibitor of metalloproteinases). A recent screen of human cartilage has shown that multiple members of the ADAMTS family may be important in connective tissue homeostasis and pathology.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/fisiologia , Artrite Reumatoide/enzimologia , Matriz Extracelular/enzimologia , Família Multigênica , Proteínas ADAM/genética , Animais , Artrite Reumatoide/genética , Matriz Extracelular/genética , Humanos , Estrutura Terciária de Proteína
12.
Anal Biochem ; 330(1): 123-9, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15183770

RESUMO

The interaction of heparan sulfate (HS) with specific proteins facilitates a wide range of fundamental biological processes including cellular proliferation and differentiation, tissue homeostasis, and viral pathogenesis. This multiplicity of function arises through sequence diversity within the HS chain. Heparin, which is very similar in structure to the sulfated regions of HS, is an excellent model for studying HS-protein interactions. The development of high-throughput enzyme-linked immunosorbent-like assays using surface-immobilized heparin has been hindered by the inability of this glycosaminoglycan to adhere to microtiter surfaces. Here we report the passive noncovalent adsorption of heparin onto microtiter wells following their treatment by plasma polymerization; there was no detectable binding of functional heparin onto untreated plates. Heparin immobilized in this way was able to interact with four different heparin-binding proteins tested, i.e., TSG-6, chemokines IL-8 and KC, and complement factor H. Heparin preparations ranging in size from high molecular weight to a defined decasaccharide could be adsorbed onto these plates in a functionally active form. Since plasma polymerization is possible for virtually any surface, this technique is likely to be of general use in the identification and characterization of heparin/HS-binding proteins in a wide range of applications.


Assuntos
Alilamina/química , Moléculas de Adesão Celular/química , Quimiocinas/química , Fator H do Complemento/química , Ensaio de Imunoadsorção Enzimática/métodos , Heparitina Sulfato/química , Moléculas de Adesão Celular/análise , Quimiocinas/análise , Fator H do Complemento/análise , Micro-Ondas
13.
Eur J Biochem ; 270(11): 2394-403, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755694

RESUMO

Three mammalian ADAMTS enzymes, ADAMTS-1, -4 and -5, are known to cleave aggrecan at certain glutamyl bonds and are considered to be largely responsible for cartilage aggrecan catabolism observed during the development of arthritis. We have previously reported that certain catechins, polyphenolic compounds found in highest concentration in green tea (Camellia sinensis), are capable of inhibiting cartilage aggrecan breakdown in an in vitro model of cartilage degradation. We have now cloned and expressed recombinant human ADAMTS-1, -4 and -5 and report here that the catechin gallate esters found in green tea potently inhibit the aggrecan-degrading activity of these enzymes, with submicromolar IC50 values. Moreover, the concentration needed for total inhibition of these members of the ADAMTS group is approximately two orders of magnitude lower than that which is needed to partially inhibit collagenase or ADAM-10 activity. Catechin gallate esters therefore provide selective inhibition of certain members of the ADAMTS group of enzymes and could constitute an important nutritional aid in the prevention of arthritis as well as being part of an effective therapy in the treatment of joint disease and other pathologies involving the action of these enzymes.


Assuntos
Catequina/análogos & derivados , Catequina/metabolismo , Desintegrinas/antagonistas & inibidores , Ésteres/metabolismo , Metaloendopeptidases/antagonistas & inibidores , Proteínas ADAM , Proteína ADAM10 , Proteína ADAMTS1 , Proteína ADAMTS4 , Proteína ADAMTS5 , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Animais , Western Blotting , Bovinos , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Desintegrinas/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Vetores Genéticos , Humanos , Concentração Inibidora 50 , Insetos , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Pró-Colágeno N-Endopeptidase , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA