Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Astron (Dordr) ; 54(2-3): 713-744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915624

RESUMO

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?

2.
Nature ; 472(7343): 331-3, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21512570

RESUMO

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.

3.
Geophys Res Lett ; 42(12): 4676-4684, 2015 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27609997

RESUMO

Neutral particles dominate regions of the Saturn magnetosphere and locations near several of Saturn's moons. Sunlight ionizes neutrals, producing photoelectrons with characteristic energy spectra. The Cassini plasma spectrometer electron spectrometer has detected photoelectrons throughout these regions, where photoelectrons may be used as tracers of magnetic field morphology. They also enhance plasma escape by setting up an ambipolar electric field, since the relatively energetic electrons move easily along the magnetic field. A similar mechanism is seen in the Earth's polar wind and at Mars and Venus. Here we present a new analysis of Titan photoelectron data, comparing spectra measured in the sunlit ionosphere at ~1.4 Titan radii (RT) and at up to 6.8 RT away. This results in an upper limit on the potential of 2.95 V along magnetic field lines associated with Titan at up to 6.8 RT, which is comparable to some similar estimates for photoelectrons seen in Earth's magnetosphere.

4.
Space Sci Rev ; 220(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282745

RESUMO

Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.

5.
Space Sci Rev ; 218(8): 65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397966

RESUMO

The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.

6.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287635

RESUMO

Saturn's main rings are composed of >95% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred "ring rain." Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30% of infalling grains, a higher percentage than the bulk silicate content of the rings.

7.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28554982

RESUMO

The European Space Agency's Rosetta mission ended operations on 30 September 2016 having spent over 2 years in close proximity to its target comet, 67P/Churyumov-Gerasimenko. Shortly before this, in summer 2016, a discussion meeting was held to examine how the results of the mission could be framed in terms of cometary and solar system science in general. This paper provides a brief history of the Rosetta mission, and gives an overview of the meeting and the contents of this associated special issue.This article is part of the themed issue 'Cometary science after Rosetta'.

8.
Nat Commun ; 10(1): 5418, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780664
9.
Faraday Discuss ; 147: 293-305; discussion 379-403, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302552

RESUMO

The detection of heavy negative ions (up to 13 800 amu) in Titan's ionosphere is one of the tantalizing new results from the Cassini mission. These heavy ions indicate for the first time the existence of heavy hydrocarbon and nitrile molecules in this primitive Earth-like atmosphere. These ions were suggested to be precursors of aerosols in Titan's atmosphere and may precipitate to the surface as tholins. We present the evidence for and the analysis of these heavy negative ions at Titan. In addition we examine the variation of the maximum mass of the Titan negative ions with altitude and latitude for the relevant encounters so far, and we discuss the implications for the negative ion formation process. We present data from a recent set of encounters where the latitude was varied between encounters, with other parameters fixed. Models are beginning to explain the low mass negative ions, but the formation process for the higher mass ions is still not understood. It is possible that the structures may be chains, rings or even fullerenes. Negative ions, mainly water clusters in this case, were seen during Cassini's recent close flybys of Enceladus. We present mass spectra from the Enceladus plume, showing water clusters and additional species. As at Titan, the negative ions indicate chemical complexities which were unknown before the Cassini encounters, and are indicative of a complex balance between neutrals and positively and negatively charged ions.

10.
Science ; 317(5838): 653-6, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17673659

RESUMO

The origin of Saturn's narrow G ring has been unclear. We show that it contains a bright arc located 167,495.6 +/- 1.3 km from Saturn's center. This longitudinally localized material is trapped in a 7:6 corotation eccentricity resonance with the satellite Mimas. The cameras aboard the Cassini spacecraft mainly observe small (1 to 10 micrometers) dust grains in this region, but a sharp decrease in the flux of energetic electrons measured near this arc requires that it also contain larger (centimeter- to meter-sized) bodies whose total mass is equivalent to that of a approximately 100-meter-wide ice-rich moonlet. Collisions into these bodies may generate dust, which subsequently drifts outward to populate the rest of the G ring. Thus, the entire G ring could be derived from an arc of debris held in a resonance with Mimas.

11.
Science ; 308(5724): 992-5, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890875

RESUMO

The magnetic field signature obtained by Cassini during its first close encounter with Titan on 26 October 2004 is presented and explained in terms of an advanced model. Titan was inside the saturnian magnetosphere. A magnetic field minimum before closest approach marked Cassini's entry into the magnetic ionopause layer. Cassini then left the northern and entered the southern magnetic tail lobe. The magnetic field before and after the encounter was approximately constant for approximately 20 Titan radii, but the field orientation changed exactly at the location of Titan's orbit. No evidence of an internal magnetic field at Titan was detected.


Assuntos
Magnetismo , Saturno , Atmosfera , Meio Ambiente Extraterreno , Astronave
12.
Science ; 302(5652): 1949-52, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14671299

RESUMO

Comet C/2002 X5 (Kudo-Fujikawa) was observed near its perihelion of 0.19 astronomical unit by the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft. Images of the comet reconstructed from high-resolution spectra reveal a quasi-spherical cloud of neutral hydrogen and a variable tail of C+ and C2+ that disconnects from the comet and subsequently regenerates. The high abundance of C2+ and C+, at least 24% relative to water, cannot be explained by photodissociation of carbon monoxide and is instead attributed to the evaporation and subsequent photoionization of atomic carbon from organic refractory compounds present in the cometary dust grains. This result serves to strengthen the connection between comets and the material from which the Solar System formed.


Assuntos
Carbono , Meteoroides , Hidrogênio , Íons , Análise Espectral , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA