Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biotropica ; 56(1): 36-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38515454

RESUMO

Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession. Abstract in Spanish is available with online material.


Determinar en que medida los bosques tropicales que se regeneran en tierras abandonadas recuperan las características de los bosques primarios es cada vez más importante para comprender su papel en la conservación de especies raras y el mantenimiento de los servicios ecosistémicos. A pesar de ello, nuestro entendimiento sobre la recuperación de la estructura del bosque y la composición de la comunidad a lo largo de la sucesión es incompleta, ya que muchas cronosecuencias tropicales no van más allá de los primeros 50 años de sucesión. En este estudio, investigamos las trayectorias de recuperación del bosque en ocho parcelas de 1 hectárea en estadíos medios y tardíos de la sucesión forestal (40­120 años) y cinco parcelas de 1 hectárea de bosque primario, en el Monumento Natural Barro Colorado (MNBC), Panamá. En primer lugar, verificamos que la edad del bosque tenía un mayor efecto que la variación edáfica o topográfica en la estructura, diversidad y composición del bosque y luego corroboramos los resultados de parcelas más pequeñas estudiadas 20 años antes. La diversidad de especies arbóreas, pero no la riqueza de especies, y la estructura forestal se habían recuperado completamente hasta alcanzar los niveles de bosque primario a los 40 y 90 años, respectivamente. Sin embargo, los bosques secundarios carecían de especies raras y presentaban una escasa abundancia de especies especialistas del bosque antiguo, lo que condujo a una recuperación incompleta de la composición de especies, incluso a 120 años de sucesión. También encontramos pruebas de que el predominio de un pionero longevo en las primeras etapas de la sucesión provocó una alteración de la estructura forestal y retrasó la recuperación de la diversidad y composición de especies más allá de un siglo después el abandono de las tierras. Nuestros resultados ilustran la importancia crítica de los bosques primarios y secundarios más antiguos para la conservación de la biodiversidad, dado que la recuperación de la composición de la comunidad puede llevar varios siglos, especialmente cuando un pionero longevo domina en la sucesión temprana.

2.
Conserv Biol ; 35(1): 297-306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496643

RESUMO

Conflicts between the interests of agriculture and wildlife conservation are a major threat to biodiversity and human well-being globally. Addressing such conflicts requires a thorough understanding of the impacts associated with living alongside protected wildlife. Despite this, most studies reporting on human-wildlife impacts and the strategies used to mitigate them focus on a single species, thus oversimplifying often complex systems of human-wildlife interactions. We sought to characterize the spatiotemporal patterns of impacts by multiple co-occurring species on agricultural livelihoods in the eastern Okavango Delta Panhandle in northern Botswana through the use of a database of 3264 wildlife-incident reports recorded from 2009 to 2015 by the Department of Wildlife and National Parks. Eight species (African elephants [Loxodonta africana], hippopotamuses [Hippopotamus amphibious], lions [Panthera leo], cheetah [Acinonyx jubatus], African wild dogs [Lycaon pictus], hyenas [Crocuta crocuta], leopards [Panthera pardus], and crocodiles [Crocodylus niloticus]) appeared on incident reports, of which 56.5% were attributed to elephants. Most species were associated with only 1 type of damage (i.e., either crop damage or livestock loss). Carnivores were primarily implicated in incident reports related to livestock loss, particularly toward the end of the dry season (May-October). In contrast, herbivores were associated with crop-loss incidents during the wet season (November-April). Our results illustrate how local communities can face distinct livelihood challenges from different species at different times of the year. Such a multispecies assessment has important implications for the design of conservation interventions aimed at addressing the costs of living with wildlife and thereby mitigation of the underlying conservation conflict. Our spatiotemporal, multispecies approach is widely applicable to other regions where sustainable and long-term solutions to conservation conflicts are needed for local communities and biodiversity.


Article Impact Statement: Impacts of protected wildlife on local community livelihoods can vary and overlap across species, spatial scales, and time of the year. Una Evaluación Multiespecie de los Impactos de la Fauna sobre el Sustento de la Comunidad Local Resumen Los conflictos entre los intereses de la agricultura y la conservación de fauna son una gran amenaza para la biodiversidad y el bienestar humano en todo el mundo. Para tratar estos conflictos se requiere un entendimiento exhaustivo de los impactos asociados con la convivencia con fauna protegida. A pesar de esto, la mayoría de los estudios que reportan sobre los impactos humano-fauna y las estrategias que se usan para mitigarlos se enfocan en una sola especie, lo que simplifica demasiado los complejos sistemas de interacciones humano-fauna. Buscamos caracterizar los patrones espaciotemporales de los impactos por múltiples especies coocurrentes sobre el sustento agrícola en la franja oriental del Delta del Okavango al norte de Botswana mediante el uso de una base de datos de 3,264 reportes de incidentes con fauna registrados entre 2009 y 2015 por el Departamento de Vida Silvestre y Parques Nacionales. Ocho especies (elefante africano [Loxodonta africana], hipopótamo [Hippopotamus amphibious], león [Panthera leo], chita [Acinonyx jubatus], licaón [Lycaon pictus], hiena [Crocuta crocuta], leopardo [Panthera pardus] y cocodrilo [Crocodylus niloticus]) aparecieron en los reportes de incidentes, de los cuales el 56.5% estaba atribuido a los elefantes. La mayoría de las especies estuvo asociada sólo con un tipo de daño (es decir, daño a cultivos o pérdida de ganado). Los carnívoros fueron los principales implicados en los reportes de incidentes relacionados con la pérdida de ganado, particularmente hacia el final de la temporada seca (mayo-octubre). Al contrario, los herbívoros estuvieron asociados con los incidentes de pérdida de cultivos durante la temporada de lluvias (noviembre-abril). Nuestros resultados ejemplifican cómo las comunidades locales pueden enfrentar diferentes dificultades en su sustento por parte de diferentes especies durante diferentes periodos en el año. Tal evaluación multiespecie tiene consecuencias importantes para el diseño de las intervenciones de conservación enfocadas en la resolución de los efectos de la convivencia con la fauna y por lo tanto la mitigación del conflicto de conservación subyacente. Nuestro enfoque multiespecie espaciotemporal puede aplicarse ampliamente a otras regiones en donde las comunidades y la biodiversidad local necesitan soluciones sustentables y a largo plazo para los conflictos de conservación.


Assuntos
Carnívoros , Leões , Panthera , Animais , Animais Selvagens , Conservação dos Recursos Naturais
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373919

RESUMO

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Solo , Solo/química , Argila , Florestas , Carbono
4.
Ecol Evol ; 12(12): e9599, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545364

RESUMO

Classic evolutionary theory suggests that sexual dimorphism evolves primarily via sexual and fecundity selection. However, theory and evidence are beginning to accumulate suggesting that resource competition can drive the evolution of sexual dimorphism, via ecological character displacement between sexes. A key prediction of this hypothesis is that the extent of ecological divergence between sexes will be associated with the extent of sexual dimorphism. As the stable isotope ratios of animal tissues provide a quantitative measure of various aspects of ecology, we carried out a meta-analysis examining associations between the extent of isotopic divergence between sexes and the extent of body size dimorphism. Our models demonstrate that large amounts of between-study variation in isotopic (ecological) divergence between sexes is nonrandom and may be associated with the traits of study subjects. We, therefore, completed meta-regressions to examine whether the extent of isotopic divergence between sexes is associated with the extent of sexual size dimorphism. We found modest but significantly positive associations across species between size dimorphism and ecological differences between sexes, that increased in strength when the ecological opportunity for dietary divergence between sexes was greatest. Our results, therefore, provide further evidence that ecologically mediated selection, not directly related to reproduction, can contribute to the evolution of sexual dimorphism.

5.
J Appl Ecol ; 59(7): 1911-1924, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36247833

RESUMO

Migratory species are protected under international legislation; their seasonal movements across international borders may therefore present opportunities for understanding how global conservation policies translate to local-level actions across different socio-ecological contexts. Moreover, local-level management of migratory species can reveal how culture and governance affects progress towards achieving global targets. Here, we investigate potential misalignment in the two-way relationship between global-level conservation policies (i.e. hunting bans and quotas) and local-level norms, values and actions (i.e. legal and illegal hunting) in the context of waterfowl hunting in northern Kazakhstan as a case-study.Northern Kazakhstan is globally important for waterfowl and a key staging area for arctic-breeding species. Hunting is managed through licences, quotas and seasonal bans under UN-AEWA intergovernmental agreements. To better understand the local socio-ecological context of waterfowl hunting, we take a mixed-methods approach using socio-ecological surveys, informal discussions and population modelling of a focal migratory goose species to: (a) investigate motivations for hunting in relation to socio-economic factors; (b) assess knowledge of species' protection status; and (c) predict the population size of Lesser White-fronted Geese (LWfG; Anser erythropus; IUCN Vulnerable) under different scenarios of survival rates and hunting offtake, to understand how goose population demographics interact with the local socio-ecological context.Model results showed no evidence that waterfowl hunting is motivated by financial gain; social and cultural importance were stronger factors. The majority of hunters are knowledgeable about species' protection status; however, 11% did not know LWfG are protected, highlighting a key area for increased stakeholder engagement.Simulations of LWfG population growth over a 20-year period showed LWfG are highly vulnerable to hunting pressure even when survival rates are high. This potential impact of hunting highlights the need for effective regulation along the entire flyway; our survey results show that hunters were generally compliant with newly introduced hunting regulations, showing that effective regulation is possible on a local level. Synthesis and applications. Here, we investigate how global conservation policy and local norms interact to affect the management of a threatened migratory species, which is particularly important for the protection and sustainable management of wildlife that crosses international borders where local contexts may differ. Our study highlights that to be effective and sustainable in the long-term, global conservation policies must fully integrate local socio-economic, cultural, governance and environmental contexts, to ensure interventions are equitable across entire species' ranges. This approach is relevant and adaptable for different contexts involving the conservation of wide-ranging and migratory species, including the 255 migratory waterfowl covered by UN-AEWA (United Nations Agreement on the Conservation of African-Eurasian Migratory Waterbirds).

6.
Sci Total Environ ; 697: 133987, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31484096

RESUMO

Reducing atmospheric CO2 is an international priority. One way to assist stabilising and reducing CO2 is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear. Current global estimates for CO2 uptake and sequestration in secondary tropical forests focus on aboveground biomass and are parameterised using relatively coarse metrics of soil fertility. Here, we estimate total carbon stocks across a chronosequence of regenerating secondary forest stands (40-120 years old) in Panama, and assess the relationships between both above- and belowground carbon stocks with stand age and specific soil nutrients. We estimated carbon stocks in aboveground biomass, necromass, root biomass, and soil. We found that the two largest carbon pools - aboveground biomass and soil - have distinct relationships with stand age and soil fertility. Aboveground biomass contained ~61-97 Mg C ha-1 (24-39% total carbon stocks) and significantly increased with stand age, but showed no relationship with soil nutrients. Soil carbon stocks contained ~128-206 Mg C ha-1 (52-70% total stocks) and were unrelated to stand age, but were positively related to soil nitrogen. Root biomass carbon stocks tracked patterns exhibited by aboveground biomass. Necromass carbon stocks did not increase with stand age, but stocks were held in larger pieces of deadwood in older stands. Comparing our estimates to published data from younger and older secondary forests in the surrounding landscape, we show that soil carbon recovers within 40 years of forest regeneration, but aboveground biomass carbon stocks continue to increase past 100 years. Above- and belowground carbon stocks appear to be decoupled in secondary tropical forests. Paired measures of above- and belowground carbon stocks are necessary to reduce uncertainty in large-scale models of atmospheric CO2 uptake and storage by secondary forests.


Assuntos
Sequestro de Carbono , Carbono , Florestas , Nitrogênio/análise , Fósforo/análise , Solo/química
7.
PLoS One ; 12(10): e0185527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040272

RESUMO

Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.


Assuntos
Conservação dos Recursos Naturais , Plantas Daninhas/fisiologia , Centrais Elétricas/ética , Árvores/fisiologia , Biomassa , Brasil , Ecossistema , Florestas , Humanos , Rios , Especificidade da Espécie , Clima Tropical
8.
Ecol Evol ; 4(1): 79-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24455163

RESUMO

Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA