Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Cancer Res ; 74(4): 1272-83, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24356420

RESUMO

Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.


Assuntos
Adenocarcinoma/diagnóstico , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/isolamento & purificação , Descoberta de Drogas/métodos , Detecção Precoce de Câncer/métodos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transplante de Neoplasias/normas , Obtenção de Tecidos e Órgãos/normas , Ensaios Antitumorais Modelo de Xenoenxerto/normas
2.
Genome Biol ; 15(8): 426, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25155515

RESUMO

BACKGROUND: Genomic analyses of hundreds of prostate tumors have defined a diverse landscape of mutations and genome rearrangements, but the transcriptomic effect of this complexity is less well understood, particularly at the individual tumor level. We selected a cohort of 25 high-risk prostate tumors, representing the lethal phenotype, and applied deep RNA-sequencing and matched whole genome sequencing, followed by detailed molecular characterization. RESULTS: Ten tumors were exposed to neo-adjuvant hormone therapy and expressed marked evidence of therapy response in all except one extreme case, which demonstrated early resistance via apparent neuroendocrine transdifferentiation. We observe high inter-tumor heterogeneity, including unique sets of outlier transcripts in each tumor. Interestingly, outlier expression converged on druggable cellular pathways associated with cell cycle progression, translational control or immune regulation, suggesting distinct contemporary pathway affinity and a mechanism of tumor stratification. We characterize hundreds of novel fusion transcripts, including a high frequency of ETS fusions associated with complex genome rearrangements and the disruption of tumor suppressors. Remarkably, several tumors express unique but potentially-oncogenic non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression. Finally, one ETS-negative tumor has a striking tandem duplication genotype which appears to be highly aggressive and present at low recurrence in ETS-negative prostate cancer, suggestive of a novel molecular subtype. CONCLUSIONS: The multitude of rare genomic and transcriptomic events detected in a high-risk tumor cohort offer novel opportunities for personalized oncology and their convergence on key pathways and functions has broad implications for precision medicine.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Antineoplásicos Hormonais/uso terapêutico , Quimioterapia Adjuvante/métodos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA