Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 126(21): e2021JD035087, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865264

RESUMO

This study investigates how wind shear and momentum fluxes in the surface- and boundary layer vary across wind and cloud regimes. We use a 9-year-long data set from the Cabauw observatory complemented by (8.2 × 8.2 k m 2 ) daily Large Eddy Simulation (LES) hindcasts. An automated algorithm classifies observed and simulated days into different cloud regimes: (a) clear-sky days, (b) days with shallow convective clouds rooted in the surface layer, with two ranges of cloud cover, and (c) non-convective cloud days. Categorized days in observations and LES do not always match, particularly the number of non-convective cloud days are underestimated in the LES, which likes to develop convection. However, the climatology and diurnal cycle of winds for each regime are very similar in LES and observations, strengthening our confidence in LES' skill to reproduce certain clouds for certain atmospheric states. Along-wind momentum flux profiles are similar across all regimes, but large cloud cover (convective and non-convective) days have larger total momentum flux distributed over a deeper layer, with up to 30% of the surface flux still present near cloud base. The clear-sky and especially shallow cumulus regime with low cloud cover have notably larger crosswind momentum fluxes in the boundary layer. Surface-layer wind shear at daytime is smallest in the shallow cumulus regimes, having deeper boundary layers and a steady increase in surface layer wind speed during daytime. Compared to clear-sky days at a similar stability, convective cloud regimes have smaller surface-layer wind shear and larger surface friction than estimated by Monin-Obukhov Similarity Theory.

2.
Boundary Layer Meteorol ; 169(2): 185-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956281

RESUMO

Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA