Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 44(5): 758-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868618

RESUMO

Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinß-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Cadeias beta de Integrinas/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Adenoviridae/metabolismo , Animais , Receptor Constitutivo de Androstano , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides , Receptor X Retinoide alfa/metabolismo
2.
Mol Pharm ; 12(8): 2712-31, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25363619

RESUMO

As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4×10(9) infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell responses and Ebola GP-specific antibodies in systemic and mucosal compartments and was partially (67%) protective from challenge 62 days after immunization. The same dose given by the SL route induced Ebola GP-specific CD8+ T cell responses similar to that of intramuscular (IM) injection, however, the Ebola GP-specific antibody response was low. All primates succumbed to infection. Three primates were then given the vaccine in a formulation that improved the immune response to Ebola in rodents. Three primates were immunized with 2.0×10(10) ivp/kg of vaccine by the SL route. Diverse populations of polyfunctional Ebola GP-specific CD4+ and CD8+ T cells and significant anti-Ebola GP antibodies were present in samples collected 150 days after respiratory immunization. The formulated vaccine was fully protective against challenge 21 weeks after immunization. While diverse populations of Ebola GP-specific CD4+ T cells were produced after SL immunization, antibodies were not neutralizing and the vaccine was unprotective. To our knowledge, this is the first time that durable protection from a single dose respiratory adenovirus-based Ebola vaccine has been demonstrated in primates.


Assuntos
Adenoviridae/imunologia , Vacinas contra Ebola/administração & dosagem , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Animais , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Doença pelo Vírus Ebola/imunologia , Humanos , Macaca fascicularis , Masculino , Vacinação/métodos , Vacinas Sintéticas/genética , Células Vero
3.
Drug Metab Dispos ; 42(7): 1191-201, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24764148

RESUMO

HC-04 cells were evaluated as an in vitro model for mechanistic study of changes in the function of hepatic CYP3A during virus infection. Similar to in vivo observations, infection with a first generation recombinant adenovirus significantly inhibited CYP3A4 catalytic activity in an isoform-specific manner. Virus (MOI 100) significantly reduced expression of the retinoid X receptor (RXR) by 30% 96 hours after infection. Cytoplasmic concentrations of the pregnane X receptor (PXR) were reduced by 50%, whereas the amount of the constitutive androstane receptor (CAR) in the nuclear fraction doubled with respect to uninfected controls. Hepatocyte nuclear factor 4α (HNF-4α) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were also reduced by ∼70% during infection. Virus suppressed CYP3A4 activity in the presence of the PXR agonist rifampicin and did not affect CYP3A4 activity in the presence of the CAR agonist CITCO [6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime], suggesting that virus-induced modification of PXR may be responsible for observed changes in hepatic CYP3A4. The HC-04 cell line is easy to maintain, and CYP3A4 in these cells was responsive to known inducers and suppressors. Dexamethasone (200 µM) and phenobarbital (500 µM) increased activity by 230 and 124%, whereas ketoconazole (10 µM) and lipopolysaccharide (LPS) (10 µg/ml) reduced activity by 90 and 92%, respectively. This suggests that HC-04 cells can be a valuable tool for mechanistic study of drug metabolism during infection and for routine toxicological screening of novel compounds prior to use in the clinic.


Assuntos
Infecções por Adenovirus Humanos/enzimologia , Citocromo P-450 CYP3A/metabolismo , Fígado/enzimologia , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Expert Rev Vaccines ; 20(5): 623-634, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666138

RESUMO

OBJECTIVE: Infectious disease emergencies like the 2013-2016 Ebola epidemic and the 2009 influenza and current SARS-CoV-2 pandemics illustrate that vaccines are now given to diverse populations with preexisting pathologies requiring pharmacological management. Many natural biomolecules (steroid hormones, fatty acids, vitamins) and ~60% of prescribed medications are processed by hepatic cytochrome P450 (CYP) 3A4. The objective of this work was to determine the impact of infection and vaccines on drug metabolism. METHODS: The impact of an adenovirus-based vaccine expressing Ebola glycoprotein (AdEBO) and H1N1 and H3N2 influenza viruses on hepatic CYP 3A4 and associated nuclear receptors was evaluated in human hepatocytes (HC-04 cells) and in mice. RESULTS: CYP3A activity was suppressed by 55% in mice 24 h after administration of mouse-adapted H1N1, while ˂10% activity remained in HC-04 cells after infection with H1N1 and H3N2 due to global suppression of cellular translation capacity, indicated by reduction (70%, H1N1, 56%, H3N2) of phosphorylated eukaryotic translation initiation factor 4e (eIF4E). AdEBO suppressed CYP3A activity in vivo (44%) and in vitro (26%) 24 hours after infection. CONCLUSION: As the clinical evaluation of vaccines for SARS-CoV-2 and other global pathogens rise, studies to evaluate the impact of new vaccines and emerging pathogens on CYP3A4 and other metabolic enzymes are warranted to avoid therapeutic failures that could further compromise the public health during infectious disease emergencies.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Células Cultivadas , Fator de Iniciação 4E em Eucariotos , Humanos , Imunização/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Expert Rev Anti Infect Ther ; 13(5): 527-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25796987

RESUMO

In response to the severity and scale of the 2014 Ebola outbreak, several experimental vaccines were granted fast-track status for clinical testing. Although they may provide long-lasting protection from Ebola, they are, in their current states, far from optimal for populations that need them the most. In this context, nasal immunization addresses the: immune response required at the mucosa where Ebola initiates infection; needs of a population in terms of cost and compliance; and potency of each platform as they contain viruses that naturally infect the respiratory tract. Understanding the attributes of nasal immunization and its application will lead to potent vaccines that can effectively end Ebola and other emerging infectious diseases in developing and industrialized countries.


Assuntos
Administração Intranasal/métodos , Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Saúde Global , Doença pelo Vírus Ebola/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA