Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420730

RESUMO

This study identified time-varying harmonic characteristics in a high-density plasma (HDP) chemical vapor deposition (CVD) chamber by depositing low-k oxide (SiOF). The characteristics of harmonics are caused by the nonlinear Lorentz force and the nonlinear nature of the sheath. In this study, a noninvasive directional coupler was used to collect harmonic power in the forward and reverse directions, which were low frequency (LF) and high bias radio frequency (RF). The intensity of the 2nd and 3rd harmonics responded to the LF power, pressure, and gas flow rate introduced for plasma generation. Meanwhile, the intensity of the 6th harmonic responded to the oxygen fraction in the transition step. The intensity of the 7th (forward) and 10th (in reverse) harmonic of the bias RF power depended on the underlying layers (silicon rich oxide (SRO) and undoped silicate glass (USG)) and the deposition of the SiOF layer. In particular, the 10th (reverse) harmonic of the bias RF power was identified using electrodynamics in a double capacitor model of the plasma sheath and the deposited dielectric material. The plasma-induced electronic charging effect on the deposited film resulted in the time-varying characteristic of the 10th harmonic (in reverse) of the bias RF power. The wafer-to-wafer consistency and stability of the time-varying characteristic were investigated. The findings of this study can be applied to in situ diagnosis of SiOF thin film deposition and optimization of the deposition process.


Assuntos
Doenças Cardiovasculares , Óxidos , Humanos , Gases , Oxigênio , Dióxido de Silício
2.
Hum Mol Genet ; 19(21): 4176-88, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699328

RESUMO

Mounting evidence from both animal and human studies suggests that the epigenome is in constant drift over the life course in response to stochastic and environmental factors. In humans, this has been highlighted by a small number of studies that have demonstrated discordant DNA methylation patterns in adolescent or adult monozygotic (MZ) twin pairs. However, to date, it remains unclear when such differences emerge, and how prevalent they are across different tissues. To address this, we examined the methylation of four differentially methylated regions associated with the IGF2/H19 locus in multiple birth tissues derived from 91 twin pairs: 56 MZ and 35 dizygotic (DZ). Tissues included cord blood-derived mononuclear cells and granulocytes, human umbilical vein endothelial cells, buccal epithelial cells and placental tissue. Considerable variation in DNA methylation was observed between tissues and between unrelated individuals. Most interestingly, methylation discordance was also present within twin pairs, with DZ pairs showing greater discordance than MZ pairs. These data highlight the variable contribution of both intrauterine environmental exposures and underlying genetic factors to the establishment of the neonatal epigenome of different tissues and confirm the intrauterine period as a sensitive time for the establishment of epigenetic variability in humans. This has implications for the effects of maternal environment on the development of the newborn epigenome and supports an epigenetic mechanism for the previously described phenomenon of 'fetal programming' of disease risk.


Assuntos
Metilação de DNA , Variação Genética , Genoma Humano , RNA não Traduzido , Útero/metabolismo , Ilhas de CpG , Feminino , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante
3.
Endocrine ; 46(1): 70-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23963811

RESUMO

Alterations in early life nutrition lead to an increased risk of obesity and metabolic syndrome in offspring. We have shown that both relative maternal undernutrition (UN) and maternal obesity result in metabolic derangements in offspring, independent of the postnatal dietary environment. Since insulin-like growth factor binding protein 2 (IGFBP2) has been shown to be independently associated with obesity and diabetes risk, we examined the IGF-IGFBP axis in male rat offspring following either maternal UN or maternal obesity to explain possible common pathways in the development of metabolic disorders. Wistar rats were time-mated and fed either a control diet (CONT), 50 % of CONT (UN) or a high-fat (HF) diet throughout pregnancy. Male offspring were weaned onto a standard chow diet and blood and tissues were collected at postnatal day 160. Plasma and hepatic tissue samples were analysed for key players in the IGF-IGFBP system. Both maternal UN and HF resulted in increased fat mass, hyperinsulinemia, hyperleptinemia and altered blood lipid profiles in offspring compared to CONT. Circulating IGF-1 and IGFBP3 levels and hepatic mRNA expression of IGFBP1 and IGFBP2 were significantly decreased in UN and HF offspring compared to CONT. DNA methylation of the IGFBP2 promotor region was similar between maternal dietary groups. Although chaperone gene heat-shock protein 90 and hepatic IGFBP1 were significantly correlated in CONT offspring this effect was absent in both UN and HF offspring. In conclusion, this study is one of the first to directly compare two experimental models of developmental programming representing both ends of the maternal dietary spectrum. Our data suggest that two disparate nutritional models that elicit similar adverse metabolic phenotypes in offspring are characterised by common alterations in the IGF-IGFBP pathway.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Animais , Peso ao Nascer , Composição Corporal , Peso Corporal , Metilação de DNA , Feminino , Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Masculino , Desnutrição/metabolismo , Gravidez , RNA/biossíntese , RNA/isolamento & purificação , Ratos
4.
Epigenetics ; 8(10): 1069-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917818

RESUMO

Epigenetic events are crucial for early development, but can be influenced by environmental factors, potentially programming the genome for later adverse health outcomes. The insulin-like growth factor 2 (IGF2)/H19 locus is crucial for prenatal growth and the epigenetic state at this locus is environmentally labile. Recent studies have implicated maternal factors, including folate intake and smoking, in the regulation of DNA methylation at this locus, although data are often conflicting in the direction and magnitude of effect. Most studies have focused on single tissues and on one or two differentially-methylated regions (DMRs) regulating IGF2/H19 expression. In this study, we investigated the relationship between multiple shared and non-shared gestational/maternal factors and DNA methylation at four IGF2/H19 DMRs in five newborn cell types from 67 pairs of monozygotic and 49 pairs of dizygotic twins. Data on maternal and non-shared supply line factors were collected during the second and third trimesters of pregnancy and DNA methylation was measured via mass spectrometry using Sequenom MassArray EpiTyper analysis. Our exploratory approach showed that the site of umbilical cord insertion into the placenta in monochorionic twins has the strongest positive association with methylation in all IGF2/H19 DMRs (p<0.05). Further, evidence for tissue- and locus-specific effects were observed, emphasizing that responsiveness to environmental exposures in utero cannot be generalized across genes and tissues, potentially accounting for the lack of consistency in previous findings. Such complexity in responsiveness to environmental exposures in utero has implications for all epigenetic studies investigating the developmental origins of health and disease.


Assuntos
Metilação de DNA , Loci Gênicos , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Fenômenos Fisiológicos da Nutrição Pré-Natal , RNA Longo não Codificante/genética , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Especificidade de Órgãos , Gravidez , Gêmeos Dizigóticos , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA