Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
IEEE Trans Nanobioscience ; 22(2): 447-452, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35763470

RESUMO

This work has aimed to synthesize less cytotoxic but antibacterial effective materials. Here we synthesized zinc, titanium nanoparticles based multishell hollow spheres (ZnO@TiO2 MSHS) via sequential template approach (STA) and studied their comparative antimicrobial activity with pure zinc and titanium nanoparticles (NPs). Various techniques have been used to explore the physico-chemical properties of the hybrid shells (ZnO@TiO2 MSHS). FTIR, XRD measurements approved the enhanced crystallinity of synthesized hybrid MSHS via STA technique constructed by ZnO, TiO2 NPs. The optical transmittance was enhanced 67.08% for ZnO@TiO2 MSHS where 50.59 %, and 53.32 % of pure ZnO, TiO2 NPs respectively. TEM images showed MSHS made up of zinc and titanium nanoparticles distributed evenly in the structure. The antibacterial activity has been studied and measured via MIZ confirmed that the ZnO@TiO2 multishell hollow spheres exhibit the antibacterial performance. On the other hand the cytotoxicity studies show the cell toxicity was decreased for ZnO@TiO2 MSHS than pure ZnO and TiO2 NPs. So it is recommended that ZnO@TiO2 multishell hollow spheres may be used as a safe and potential antibacterial agent in the field of food packaging, painting, drug delivery and other antibacterial applications.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Óxido de Zinco , Titânio/farmacologia , Titânio/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química
2.
Anal Chem ; 84(21): 9615-22, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23035927

RESUMO

A novel polyelectrolyte (PE)-modified nanopore, comprising a solid-state nanopore functionalized by a nonregulated PE brush layer connecting two large reservoirs, is proposed to regulate the electrokinetic translocation of a soft nanoparticle (NP), comprising a rigid core covered by a pH-regulated, zwitterionic, soft layer, through it. The type of NP considered mimics bionanoparticles such as proteins and biomolecules. We find that a significant enrichment of H(+) occurs near the inlet of a charged solid-state nanopore, appreciably reducing the charge density of the NP as it approaches there, thereby lowering the NP translocation velocity and making it harder to thread the nanopore. This difficulty can be resolved by the proposed PE-modified nanopore, which raises effectively both the capture rate and the capture velocity of the soft NP and simultaneously reduces its translocation velocity through the nanopore so that both the sensing efficiency and the resolution are enhanced. The results gathered provide a conceptual framework for the interpretation of relevant experimental data and for the design of nanopore-based devices used in single biomolecules sensing and DNA sequencing.


Assuntos
Movimento (Física) , Nanopartículas/química , Proteínas/química , Eletrólitos/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nanoporos
3.
Electrophoresis ; 33(23): 3458-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23124983

RESUMO

In the next-generation nanopore-based DNA sequencing technique, the DNA nanoparticles are electrophoretically driven through a nanopore by an external electric field, and the ionic current through the nanopore is simultaneously altered and recorded during the DNA translocation process. The change in the ionic current through the nanopore as the DNA molecule passes through the nanopore represents a direct reading of the DNA sequence. Due to the large mismatch of the cross-sectional areas of the nanopore and the microfluidic reservoirs, the electric field inside the nanopore is significantly higher than that in the fluid reservoirs. This results in high-speed DNA translocation through the nanopore and consequently low read-out accuracy on the DNA sequences. Slowing down DNA translocation through the nanopore thus is one of the challenges in the nanopore-based DNA sequencing technique. Slowing down DNA translocation by lowering the fluid temperature is theoretically investigated for the first time using a continuum model, composed of the coupled Poisson-Nernst-Planck equations for the ionic mass transport and the Navier-Stokes equations for the hydrodynamic field. The results qualitatively agree with the existing experimental results. Lowering the fluid temperature from 25 to 0°C reduces the translocation speed by a magnitude of about 6.21 to 2.50 mm/sK (i.e. 49.82 to 49.71%) for the salt concentration at 200 and 2000 mM, respectively, improving the read-out accuracy considerably. As the fluid temperature decreases, the magnitude of the ionic current signal decreases (increases) when the salt concentration is high (sufficiently low).


Assuntos
DNA/química , Nanoporos , Nanotecnologia/métodos , Análise de Sequência de DNA/métodos , DNA/análise , Técnicas Eletroquímicas/métodos , Humanos , Íons/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Modelos Químicos , Temperatura
4.
Electrophoresis ; 33(13): 1980-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22806463

RESUMO

A novel cell electrofusion microfluidic chip using discrete coplanar vertical sidewall electrodes has been designed, fabricated, and tested. The device contains a serpentine-shaped microchannel with 22 500 pairs of vertical sidewall microelectrodes patterned on two opposing vertical sidewalls of the microchannel. The adjacent microelectrodes on each sidewall are separated by coplanar SiO(2) -Polysilicon-SiO(2) /silicon. This design of coplanar discrete vertical sidewall electrodes eliminates the "dead area" present in previous designs using continuous three-dimensional (3D) protruding sidewall electrodes, and generates uniform electric field along the height of the microchannel, leading to a lower voltage required for cell fusion compared to designs using 2D thin-film electrodes. This device is tested to fuse NIH3T3 cells under a low voltage (∼9 V). Almost 100% cells are aligned to the edge of the discrete microelectrodes, and cell-cell pairing efficiency reaches 70%. The electrofusion efficiency is above 40% of the total cells loaded into the device, which is much higher than traditional fusion methods and existing microfluidic devices using continuous 3D protruding sidewall microelectrodes.


Assuntos
Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Condutividade Elétrica , Proteínas Luminescentes/química , Camundongos , Microeletrodos , Microscopia de Fluorescência , Células NIH 3T3 , Proteína Vermelha Fluorescente
5.
Electrophoresis ; 32(14): 1864-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21710551

RESUMO

Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating electrode arising from the induced-charge electroosmosis when the applied electric field is relatively high. The presence of the floating electrode attracts more ions inside the nanopore resulting in an increase in the ionic current flowing through the nanopore; however, it has a limited effect on the deviation of the current from its base current when the particle is far from the pore.


Assuntos
DNA/química , Eletro-Osmose/instrumentação , Eletro-Osmose/métodos , Técnicas Analíticas Microfluídicas , Modelos Químicos , Nanoporos , Algoritmos , DNA/isolamento & purificação , Eletrodos , Tamanho da Partícula , Reprodutibilidade dos Testes , Eletricidade Estática
6.
Electrophoresis ; 32(22): 3257-67, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038622

RESUMO

We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated.


Assuntos
Eletrólitos/química , Eletro-Osmose , Eletroforese , Técnicas Analíticas Microfluídicas , Fenômenos Eletromagnéticos , Modelos Químicos
7.
Nanotechnology ; 22(3): 035702, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21149965

RESUMO

Ni nanorod arrays have been vertically grown on a Ta-coated Si substrate via an electrodeposition process through the nanopores of a porous alumina membrane. Field emission studies of the samples are performed which show a considerable low-threshold field around 5 V µm(-1). The field emission mechanism followed Fowler-Nordheim tunneling due to large field enhancement at the emitter tips. Low-dimensional structures of the nanorod tips provided the large geometrical field enhancement and thus produce a high enough local or barrier field for low-threshold cold-field electron emission. The cost-effective synthesis of vertically aligned Ni nanorods on an Si substrate and low-threshold field emission properties can provide a potential alternative to conventional carbon-based field emitters for low power panel applications.

8.
Nanotechnology ; 22(36): 365705, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21841217

RESUMO

Field emission properties of CuAlO(2) nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm(-1) and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

9.
Electrophoresis ; 31(22): 3711-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20945412

RESUMO

Various particle manipulations including enrichment, movement, trapping, separation, and focusing by floating electrodes attached to the bottom wall of a straight microchannel under an imposed DC electric field have been experimentally demonstrated. In contrast to a dielectric microchannel possessing a nearly uniform surface charge (or ζ potential), the metal strip (floating electrode) is polarized under the imposed electric field, resulting in a nonuniform distribution of the induced surface charge with a zero net surface charge along the floating electrode's surface, and accordingly induced-charge electroosmotic flow near the metal strip. The induced induced-charge electroosmotic flow can be regulated by controlling the strength of the imposed electric field and affects both the hydrodynamic field and the particle's motion. By using a single floating electrode, charged particles could be locally concentrated in a section of the channel or in an end-reservoir and move toward either the anode or the cathode by controlling the strength of the imposed electric field. By using double floating electrodes, negatively charged particles could be concentrated between the floating electrodes, subsequently squeezed to a stream flowing in the center region of the microchannel toward the cathodic reservoir, which can be used to focus particles.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Eletrodos , Eletro-Osmose , Microesferas , Nanopartículas/química , Tamanho da Partícula , Cloreto de Potássio/química
10.
Chemphyschem ; 11(15): 3281-90, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20928880

RESUMO

The translation of a charged, elongated cylindrical nanoparticle along the axis of a nanopore driven by an imposed axial salt concentration gradient is investigated using a continuum theory, which consists of the ionic mass conservation equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the modified Stokes equations for the hydrodynamic field. The diffusiophoretic motion is driven by the induced electrophoresis and chemiphoresis. The former is driven by the generated overall electric field arising from the difference in the ionic diffusivities and the double layer polarization, while the latter is generated by the induced osmotic pressure gradient around the charged particle. The induced diffusiophoretic motion is investigated as functions of the imposed salt concentration gradient, the ratio of the particle's radius to the double layer thickness, the cylinder's aspect ratio (length/radius), the ratio of the nanopore size to the particle size, the surface charge densities of the nanoparticle and the nanopore, and the type of the salt used. The induced diffusiophoretic motion of a nanorod in an uncharged nanopore is mainly governed by the induced electrophoresis, driven by the induced electric field arising from the double layer polarization. The induced particle motion is driven by the induced electroosmotic flow, if the charges of the nanorod and nanopore wall have the same sign.

11.
Micromachines (Basel) ; 11(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256021

RESUMO

Functionalized nanofluidics devices have recently emerged as a powerful platform for applications of energy conversion. Inspired by biological cells, we theoretically studied the effect of the interaction between the nanoparticle and the plate which formed the brush layer modified by functional zwitterionic polyelectrolyte (PE) on the bulk charge density of the nanoparticle brush layer, and the charge/discharge effect when the distance between the particle and the plate was changed. In this paper, The Poisson-Nernst-Planck equation system is used to build the theoretical model to study the interaction between the nanoparticle and the plate modified by the PE brush layer, considering brush layer charge regulation in the presence of multiple ionic species. The results show that the bulk charge density of the brush layer decreases with the decrease of the distance between the nanoparticle and the flat substrate when the interaction occurs between the nanoparticle and the plate. When the distance between the particle and the plate is about 2 nm, the charge density of the brush layer at the bottom of the particle is about 69% of that at the top, and the electric field energy density reaches the maximum value when the concentration of the background salt solution is 10 mm.

12.
Electrophoresis ; 30(14): 2499-506, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19639572

RESUMO

Transient electrophoretic motion of a charged particle through a converging-diverging microchannel is studied by solving the coupled system of the Navier-Stokes equations for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangian-Eulerian finite-element method. A spatially non-uniform electric field is induced in the converging-diverging section, which gives rise to a direct current dielectrophoretic (DEP) force in addition to the electrostatic force acting on the charged particle. As a sequence, the symmetry of the particle velocity and trajectory with respect to the throat is broken. We demonstrate that the predicted particle trajectory shifts due to DEP show quantitative agreements with the existing experimental data. Although converging-diverging microchannels can be used for super fast electrophoresis due to the enhancement of the local electric field, it is shown that large particles may be blocked due to the induced DEP force, which thus must be taken into account in the study of electrophoresis in microfluidic devices where non-uniform electric fields are present.


Assuntos
Eletroforese/métodos , Microfluídica/métodos , Modelos Químicos , Algoritmos , Campos Eletromagnéticos , Análise de Elementos Finitos , Tamanho da Partícula
13.
Sci Rep ; 7(1): 13227, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038427

RESUMO

ABSTARCT: Ti substrate surface is modified into two-dimensional (2D) TiO2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO2. Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm-2) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

14.
Ultrason Sonochem ; 20(2): 734-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23151400

RESUMO

Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX).

15.
Colloids Surf B Biointerfaces ; 110: 81-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23711780

RESUMO

Electroformation and electrofusion of giant vesicles with diameters of 10-20µm have been performed in a microfluidic device with high-density microelectrodes forming the sidewalls of the microchannel. Electroformation of giant vesicles by a solution mixture of phosphatidylcholine (PC) and cholesterol (Chol) with different concentrations under AC electric field was investigated. Under the conditions of 0.5-12mg/mL PC and 0.1-2.4mg/mL Chol, vesicles were electroformed by the AC electric field imposed. About 60% electroformed vesicles were giant (unilamellar) vesicles with diameters 10-20µm. The eletroformed vesicles were collected from the chip, re-suspended in fresh buffer, and then separated by centrifugation to segregate the ones with desired diameters (10-20µm). Electrofusion of the giant vesicles was conducted in the same chip. Vesicles were aligned to form pairs under AC electric field due to positive dielectrophoresis, and the paired vesicles were subsequently fused upon the application of high strength electrical pulses. The alignment and fusion efficiencies were, respectively, about 50% and 20%.


Assuntos
Técnicas Eletroquímicas/instrumentação , Lipídeos/química , Técnicas Analíticas Microfluídicas/instrumentação , Colesterol/química , Eletrodos , Tamanho da Partícula , Fosfatidilcolinas/química , Propriedades de Superfície
16.
Nanoscale ; 4(16): 5169-77, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22802160

RESUMO

Chemically functionalized nanopores in solid-state membranes have recently emerged as versatile tools for regulating ion transport and sensing single biomolecules. This study theoretically investigated the importance of the bulk salt concentration, the geometries of the nanopore, and both the thickness and the grafting density of the polyelectrolyte (PE) brushes on the electrokinetic ion and fluid transport in two types of PE brush functionalized nanopore: PE brushes are end-grafted to the entire membrane surface (system I), and to its inner surface only (nanopore wall) (system II). Due to a more significant ion concentration polarization (CP), the enhanced local electric field inside the nanopore, the conductance, and the electroosmotic flow (EOF) velocity in system II are remarkably smaller than those in system I. In addition to a significantly enhanced EOF inside the nanopore, the direction of the flow field near both nanopore openings in system I is opposite to that of EOF inside the nanopore. This feature can be applied to regulate the electrokinetic translocation of biomolecules through a nanopore in the nanopore-based DNA sequencing platform.

17.
J Colloid Interface Sci ; 356(1): 331-40, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21277582

RESUMO

The phoretic translation of a charged, elongated cylindrical nanoparticle, such as a DNA molecule and nanorod, along the axis of a nanopore driven by simultaneous axial electric field and salt concentration gradient, has been investigated using a continuum model, which consists of the Poisson-Nernst-Planck equations for the ionic concentrations and electric potential, and the Stokes equations for the hydrodynamic field. The induced particle motion includes both electrophoresis, driven by the imposed electric field, and diffusiophoresis, arising from the imposed salt concentration gradient. The particle's phoretic velocity along the axis of a nanopore is computed as functions of the imposed salt concentration gradient, the ratio of the its radius to the double-layer thickness, the nanorod's aspect ratio (length/radius), the ratio of the nanopore size to the particle size, the surface-charge density of the particle, and that of the nanopore in KCl solution. The diffusiophoresis in a nanopore mainly arises from the induced electrophoresis driven by the generated electric field, stemming from the double-layer polarization, and can be used to regulate electrophoretic translocation of a nanorod, such as a DNA molecule, through a nanopore. When both the nanorod and the nanopore wall are charged, the induced electroosmotic flow arising from the interaction of the overall electric field with the double layer adjacent to the nanopore wall has a significant effect on both electrophoresis driven by the imposed electric field and diffusiophoresis driven by the imposed salt gradient.

18.
Biomicrofluidics ; 5(3): 34121-3412112, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22662046

RESUMO

A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays to induce electroporation and electrofusion. Compared to the design with thin film microelectrode arrays deposited at the bottom of the side walls, the 3D thin film microelectrode array could induce electroporation and electrofusion under a lower voltage. The staggered electrode arrays on opposing side walls induce inhomogeneous electric field distribution, which could avoid multi-cell fusion. The alignment and pairing efficiencies of K562 cells in this device were 99% and 70.7%, respectively. The electric pulse of low voltage (∼9 V) could induce electrofusion of these cells, and the fusion efficiency was about 43.1% of total cells loaded into the device, which is much higher than that of the convectional and most existing microfluidics-based electrofusion devices.

19.
Colloids Surf B Biointerfaces ; 88(1): 165-74, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21775109

RESUMO

Many biocolloids, biological cells and micro-organisms are soft particles, consisted with a rigid inner core covered by an ion-permeable porous membrane layer. The electrophoretic motion of a soft spherical nanoparticle in a nanopore filled with an electrolyte solution has been investigated using a continuum mathematical model. The model includes the Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes and Brinkman equations for the hydrodynamic fields outside and inside the porous membrane layer, respectively. The effects of the "softness" of the nanoparticle on its electrophoretic velocity along the axis of a nanopore are examined with changes in the ratio of the radius of the rigid core to the double layer thickness, the ratio of the thickness of the porous membrane layer to the radius of the rigid core, the friction coefficient of the porous membrane layer, the fixed charge inside the porous membrane layer of the particle and the ratio of the radius of the nanopore to that of the rigid core. The presence of the soft membrane layer significantly affects the particle electrophoretic mobility.


Assuntos
Modelos Teóricos , Nanoporos , Eletroforese
20.
Biomicrofluidics ; 4(1): 13201, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20644664

RESUMO

Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle's zeta potential to that of microchannel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA