Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proteomics ; 24(5): e2300239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37681534

RESUMO

Despite substantial advances in the use of proteomic technologies, their widespread application in fruit tissues of non-model and recalcitrant species remains limited. This hampers the understanding of critical molecular events during the postharvest period of fleshy tropical fruits. Therefore, we evaluated label-free quantitation (LFQ) and TMT-SPS-MS3 (TMT) approaches to analyse changes in the protein profile of mango peels during postharvest period. We compared two extraction methods (phenol and chloroform/methanol) and two peptide fractionation schemes (SCX and HPRP). We accurately identified 3065 proteins, of which, 1492 were differentially accumulated over at 6 days after harvesting (DAH). Both LFQ and TMT approaches share 210 differential proteins including cell wall proteins associated with fruit softening, as well as aroma and flavour-related proteins, which were increased during postharvest period. The phenolic protein extraction and the high-pH reverse-phase peptide fractionation was the most effective pipeline for relative quantification. Nevertheless, the information provided by the other tested strategies was significantly complementary. Besides, LFQ spectra allowed us to track down intact N-glycopeptides corroborating N-glycosylations on the surface of a desiccation-related protein. This work represents the largest proteomic comparison of mango peels during postharvest period made so far, shedding light on the molecular foundation of edible fruit during ripening.


Assuntos
Mangifera , Mangifera/química , Mangifera/metabolismo , Proteômica , Frutas/metabolismo , Fenóis/análise , Fenóis/metabolismo , Peptídeos/análise
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068878

RESUMO

Molecular plant biology is the study of the molecular basis of plant life [...].


Assuntos
Biologia Molecular , Plantas , Espanha , Plantas/genética , Biologia
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077370

RESUMO

The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.


Assuntos
Quercus , Ecossistema , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Quercus/metabolismo , Árvores
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466599

RESUMO

Advancements in high-throughput "Omics" techniques have revolutionized plant molecular biology research [...].


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Redes e Vias Metabólicas , Proteínas de Plantas/análise , Plantas/química
5.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33800973

RESUMO

Drought is one of the main causes of mortality in holm oak (Quercus ilex) seedlings used in reforestation programs. Although this species shows high adaptability to the extreme climate conditions prevailing in Southern Spain, its intrinsic genetic variability may play a role in the differential response of some populations and individuals. The aim of this work was to identify proteins and derived proteotypic peptides potentially useful as putative markers for drought tolerance in holm oak by using a targeted post-acquisition proteomics approach. For this purpose, we used a set of proteins identified by shotgun (LC-MSMS) analysis in a drought experiment on Q. ilex seedlings from four different provenances (viz. the Andalusian provinces Granada, Huelva, Cadiz and Seville). A double strategy involving the quantification of proteins and target peptides by shotgun analysis and post-acquisition data analysis based on proteotypic peptides was used. To this end, an initial list of proteotypic peptides from proteins highly represented under drought conditions was compiled that was used in combination with the raw files from the shotgun experiment to quantify the relative abundance of the fragment's ion peaks with the software Skyline. The most abundant peptides under drought conditions in at least two populations were selected as putative markers of drought tolerance. A total of 30 proteins and 46 derived peptides belonging to the redox, stress-related, synthesis,-folding and degradation, and primary and secondary metabolism functional groups were thus identified. Two proteins (viz., subtilisin and chaperone GrpE protein) were found at increased levels in three populations, which make them especially interesting for validation drought tolerance markers in subsequent experiments.


Assuntos
Aclimatação , Análise de Dados , Secas , Peptídeos/metabolismo , Proteoma , Proteômica , Quercus/fisiologia , Biomarcadores , Biologia Computacional , Proteínas de Plantas/metabolismo , Proteólise , Proteômica/métodos
6.
Molecules ; 26(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919481

RESUMO

This study aimed to evaluate a complete nutritional composition in the seeds Quercus virginiana to compare this nutritional composition with three Mediterranean Quercus species. We analyzed the seed morphometry, proximate composition, phytochemicals, and antioxidant capacity. The seed of Q. virginiana presented the smaller seed size and weight, while Q. suber presented the highest values. Moreover, Q. virginiana seeds showed the highest amounts of sugar and total lipids, digestibility, energy, palmitic acid, and stearic acid. On the other hand, Q. virginiana seeds showed the lowest values of linoleic acid. Moreover, Q. coccifera seeds presented the highest total phenolics and flavonoids contents and antioxidant activity. The clustering analysis revealed a significant similarity in seed morphometry and nutritional composition between the Mediterranean Q. ilex and Q. suber, grouping with the American Q. virginiana, but to a considerable distance; by contrast, the Mediterranean Q. coccifera was the most distant in the clustering analysis. The content of phenolics and flavonoids and digestibility value were the variables that contributed to the separation to a greater extent in the clustering of the four species. The nutritional and biological activity assessment of plant seed may be considered as an essential mission to find new sustainable sources and novel chemical agents. In this sense, Quercus seeds may be an alternative and a competitive food source for the agri-food industry.


Assuntos
Antioxidantes/química , Compostos Fitoquímicos/química , Quercus/química , Sementes/química , Antioxidantes/isolamento & purificação , Germinação/efeitos dos fármacos , Humanos , Região do Mediterrâneo , Fenóis/química , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Quercus/classificação , Quercus/crescimento & desenvolvimento , Estados Unidos
7.
Clin Exp Allergy ; 50(7): 815-823, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32511782

RESUMO

BACKGROUND: Pollen food allergy syndrome (PFAS) related to PR10 from vegetables is common in northern Europe, whereas in Mediterranean countries PFAS has been preferentially associated with profilins. However, there are pollen-allergic patients reactive to Bet v 1 in birch-free regions. Since it cannot be the primary sensitizer, there has to be another culprit. Quercus ilex is a good candidate as it belongs to the order Fagales. This order includes trees with highly sensitizing pollen such as alder, hazel, hornbeam, oak and chestnut because of the presence of PR10 allergens. PR10 allergens have indeed been described in other Quercus species. OBJECTIVE: Our goals were to determine the rate of sensitization to Q. ilex in central Spain and the associated frequency of PFAS; secondly to identify and clone the Q. ilex allergen PR10. METHODS: We included 224 allergic patients with respiratory symptoms to estimate the rate of sensitization. A skin prick test (SPT) and ImmunoCAP were performed. A total of 38 Q. ilex-sensitized patients were tested using Western blotting to determine the rate of Que i 1. Peptides from Que i 1 were analysed by MALDI-TOF/TOF and Orbitrap LC-MSMS. The Que i 1 sequence was first obtained from the Holm oak transcriptome then cloned and expressed in bacteria. RESULTS: 59.8% of pollen-allergic children were sensitized to Q. ilex. We described and cloned the Q. ilex PR10, Que i 1, which has a sensitization rate of 60.5% and was recognized by 65.4% patients reporting PFAS. CONCLUSION AND CLINICAL RELEVANCE: Sensitization to Q. ilex pollen has increased significantly since 1995. This sensitization could be important, as the presence of PFAS in this population is higher than in patients not sensitized to Q. ilex. The first Q. ilex allergen has been described and is related to PFAS in Spanish patients sensitized to PR10 but not exposed to birch pollen.


Assuntos
Alérgenos , Hipersensibilidade Alimentar/epidemiologia , Quercus , Rinite Alérgica Sazonal/epidemiologia , Adolescente , Alérgenos/genética , Alérgenos/imunologia , Criança , Feminino , Hipersensibilidade Alimentar/imunologia , Humanos , Masculino , Quercus/genética , Quercus/imunologia , Rinite Alérgica Sazonal/imunologia , Espanha/epidemiologia , Síndrome
8.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660160

RESUMO

Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1-M3), middle (M4-M7), and late (M8-M9) seed maturation, and early (G1-G3) and late (G4-G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6-M7) in cotyledons and at late ones (M8-M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.


Assuntos
Germinação/fisiologia , Proteoma/metabolismo , Quercus/metabolismo , Quercus/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Eletroforese em Gel Bidimensional/métodos , Proteínas de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736277

RESUMO

Proteomics has had a big impact on plant biology, considered as a valuable tool for several forest species, such as Quercus, Pines, Poplars, and Eucalyptus. This review assesses the potential and limitations of the proteomics approaches and is focused on Quercus ilex as a model species and other forest tree species. Proteomics has been used with Q. ilex since 2003 with the main aim of examining natural variability, developmental processes, and responses to biotic and abiotic stresses as in other species of the genus Quercus or Pinus. As with the progress in techniques in proteomics in other plant species, the research in Q. ilex moved from 2-DE based strategy to the latest gel-free shotgun workflows. Experimental design, protein extraction, mass spectrometric analysis, confidence levels of qualitative and quantitative proteomics data, and their interpretation are a true challenge with relation to forest tree species due to their extreme orphan and recalcitrant (non-orthodox) nature. Implementing a systems biology approach, it is time to validate proteomics data using complementary techniques and integrate it with the -omics and classical approaches. The full potential of the protein field in plant research is quite far from being entirely exploited. However, despite the methodological limitations present in proteomics, there is no doubt that this discipline has contributed to deeper knowledge of plant biology and, currently, is increasingly employed for translational purposes.


Assuntos
Proteínas de Plantas/metabolismo , Proteômica , Quercus/metabolismo , Árvores/metabolismo , Adaptação Biológica , Biodiversidade , Desenvolvimento Vegetal , Proteoma , Proteômica/métodos , Estresse Fisiológico , Árvores/classificação
10.
Proteomics ; 16(5): 866-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621614

RESUMO

The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution.


Assuntos
Proteínas de Plantas/análise , Plantas/metabolismo , Proteoma/análise , Proteômica/métodos , Biologia de Sistemas/métodos , Transdução de Sinais
11.
Planta ; 243(2): 369-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26424229

RESUMO

MAIN CONCLUSION: Contrary to the orthodox seeds, recalcitrant Holm oak seeds possess the enzymatic machinery to start germination during the maturation phase. The protein profile of the different parts, mature seeds, of the Holm oak, a non-orthodox plant species, has been characterized using one- and two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization-time of flight mass spectrometry. Protein content and profiles of the three seed tissues (cotyledon, embryonic axis and tegument) were quite different. The embryonic axis showed 4-fold and 20-fold higher protein content than the cotyledon and the tegument, respectively. Two hundred and twenty-six variable proteins among the three seed parts were identified, being classified according to their function into eight main groups. The cotyledon presented the highest number of metabolic and storage proteins (89% of them are legumin) compared to the embryonic axis and tegument. The embryonic axis had the highest number of the species within the protein fate group. The tegument presented the largest number of the defense-/stress-related and cytoskeleton proteins. This distribution is in good agreement with the biological role of the tissues. The study of the seed tissue proteome demonstrated a compartmentalization of pathways and a division of metabolic tasks between embryonic axis, cotyledon and tegument. This compartmentalization uncovered in our study should provide a starting point for understanding, at the molecular level, the particularities of the recalcitrant seeds.


Assuntos
Proteínas de Plantas/metabolismo , Quercus/metabolismo , Análise por Conglomerados , Cotilédone/metabolismo , Proteoma , Sementes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Proteomics ; 15(5-6): 1089-112, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25487722

RESUMO

In this article, the topic of plant proteomics is reviewed based on related papers published in the journal Proteomics since publication of the first issue in 2001. In total, around 300 original papers and 41 reviews published in Proteomics between 2000 and 2014 have been surveyed. Our main objective for this review is to help bridge the gap between plant biologists and proteomics technologists, two often very separate groups. Over the past years a number of reviews on plant proteomics have been published . To avoid repetition we have focused on more recent literature published after 2010, and have chosen to rather make continuous reference to older publications. The use of the latest proteomics techniques and their integration with other approaches in the "systems biology" direction are discussed more in detail. Finally we comment on the recent history, state of the art, and future directions of plant proteomics, using publications in Proteomics to illustrate the progress in the field. The review is organized into two major blocks, the first devoted to provide an overview of experimental systems (plants, plant organs, biological processes) and the second one to the methodology.


Assuntos
Proteínas de Plantas , Estruturas Vegetais , Proteômica/métodos , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Modelos Biológicos , Mapeamento de Peptídeos , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Estruturas Vegetais/química , Estruturas Vegetais/metabolismo
13.
Biomolecules ; 14(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397397

RESUMO

Holm oak (Quercus ilex) is considered to be one of the major structural elements of Mediterranean forests and the agrosilvopastoral Spanish "dehesa", making it an outstanding example of ecological and socioeconomic sustainability in forest ecosystems. The exotic Phytophthora cinnamomi is one of the most aggressive pathogens of woody species and, together with drought, is considered to be one of the main drivers of holm oak decline. The effect of and response to P. cinnamomi inoculation were studied in the offspring of mother trees from two Andalusian populations, Cordoba and Huelva. At the two locations, acorns collected from both symptomatic (damaged) and asymptomatic (apparently healthy) trees were sampled. Damage symptoms, mortality, and chlorophyll fluorescence were evaluated in seedlings inoculated under humid and drought conditions. The effect and response depended on the population and were more apparent in Huelva than in Cordoba. An integrated proteomic and metabolomic analysis revealed the involvement of different metabolic pathways in response to the pathogen in both populations, including amino acid metabolism pathways in Huelva, and terpenoid and flavonoid biosynthesis in Cordoba. However, no differential response was observed between seedlings inoculated under humid and drought conditions. A protective mechanism of the photosynthetic apparatus was activated in response to defective photosynthetic activity in inoculated plants, which seemed to be more efficient in the Cordoba population. In addition, enzymes and metabolites of the phenylpropanoid and flavonoid biosynthesis pathways may have conferred higher resistance in the Cordoba population. Some enzymes are proposed as markers of resilience, among which glyoxalase I, glutathione reductase, thioredoxin reductase, and cinnamyl alcohol dehydrogenase are candidates.


Assuntos
Phytophthora , Quercus , Ecossistema , Secas , Proteômica , Árvores , Plântula , Flavonoides/metabolismo
14.
Sci Total Environ ; 927: 171917, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580127

RESUMO

Lasiodiplodia hormozganensis, initially recognized as a fungal plant pathogen, is recognized now acknowledged as a potential threat to humans. However, our understanding of the pathogenesis mechanisms of Lasiodiplodia species remains limited, and the impact of temperature on its pathogenicity is unclear. This study aims to elucidate the effects of temperature on the biology of L. hormozganensis, focusing on the expression of pathogenesis-related molecules and its ability to function as a cross-kingdom pathogen. We conducted experiments at two different temperatures, 25 and 37 °C, analyzing the proteome and transcriptome of L. hormozganensis. Using strain CBS339.90, initially identified as L. theobromae but confirmed through ITS and tef1-α sequence analysis to be L. hormozganensis, we aimed to understand the fungus's protein expression under varying temperature conditions. Results from the functional analysis of the secretome at 25 °C showed a noteworthy presence of proteins related to carbohydrate metabolism, catabolism, plant cell wall degradation, and pathogenesis. However, when grown at 37 °C, the fungus exhibited an increased production of stress response and pathogenesis-related proteins. Our findings identified various pathways crucial for pathogenesis in both plants and humans, suggesting that L. hormozganensis possesses the genetic foundation to infect both hosts. Specific pathogenesis-related proteins, including the phytotoxin snodprot1, aspartic protease aspergillopepsin, and virulence protein SSD1, were also identified. Concluding, we propose a possible mechanism of how L. hormozganensis adapts to different temperatures. The shift in temperature results in the expression of genes that favor human related pathogenesis molecules.


Assuntos
Ascomicetos , Temperatura , Ascomicetos/fisiologia , Ascomicetos/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transcriptoma
15.
J Proteome Res ; 12(6): 3042-56, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23627497

RESUMO

The phytopathogenic fungus Botrytis cinerea infects more than different 200 plant species and causes substantial losses in numerous crops. The B05.10 and T4 wild-type strain genomes have been recently sequenced, becoming a model system for necrotrophic pathogens, as well as opening up new alternatives in functional genomics, such as proteomics. We analyzed B. cinerea mycelium from these two wild-type strains, introducing label-free shotgun nUPLC-MS(E) methodology to complement the 2-DE-MS-based approach. We assessed the label-free nUPLC-MS(E) methodology for protein identification and quantification using five mycelium protein dilutions. A total of 225 and 170 protein species were identified by nUPLC-MS(E) in the B05.10 and T4 strains, respectively. Moreover, 129 protein species were quantified in both strains. Significant differences in protein abundance were found in 15 more abundant and 16 less abundant protein species in the B05.10 strain compared to the T4 strain. Twenty-nine qualitative and 15 significant quantitative differences were found using 2-DE. The label-free nUPLC-MS(E) was a reliable, reproducible and sensitive method for protein identification and quantification to study the B. cinerea mycelial proteome. Results obtained by gel-based and gel-free complementary approaches allow a deeper characterization of this fungus, as well as the identification of potential virulence factors.


Assuntos
Botrytis/química , Proteínas Fúngicas/isolamento & purificação , Micélio/química , Fragmentos de Peptídeos/isolamento & purificação , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Proteólise , Proteômica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tripsina/química
16.
J Proteome Res ; 12(11): 5110-23, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24088139

RESUMO

Responses to drought stress by water withholding have been studied in 1 year old Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) seedlings from seven provenances from Andalusia (southern Spain). Several physiological parameters, including predawn xylem water potentials and relative water content in soil, roots, and leaves as well as maximum quantum efficiency and yield of PSII were evaluated for 28 days in both irrigated and nonirrigated seedlings. The leaf proteome map of the two provenances that show the extreme responses (Seville, GSE, is the most susceptible, while Almería, SSA, is the least susceptible) was obtained. Statistically significant variable spots among provenances and treatments were subjected to MALDI-TOF/TOF-MS/MS analysis for protein identification. In response to drought stress, ~12.4% of the reproducible spots varied significantly depending on the treatment and the population. These variable proteins were mainly chloroplastic and belonged to the metabolism and defense/stress functional categories. The 2-DE protein profile of nonirrigated seedlings was similar in both provenances. Physiological and proteomics data were generally in good agreement. The general trend was a decrease in protein abundance upon water withholding in both provenances, mainly in those involved in ATP synthesis and photosynthesis. This decrease, moreover, was most marked in the most susceptible population compared with the less susceptible one.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/metabolismo , Proteômica/métodos , Quercus/genética , Quercus/fisiologia , Estresse Fisiológico/genética , Análise de Variância , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Quercus/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Espanha , Estresse Fisiológico/fisiologia , Espectrometria de Massas em Tandem
17.
Front Plant Sci ; 14: 1130665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089649

RESUMO

This review is a compilation of proteomic studies on forest tree species published in the last decade (2012-2022), mostly focused on the most investigated species, including Eucalyptus, Pinus, and Quercus. Improvements in equipment, platforms, and methods in addition to the increasing availability of genomic data have favored the biological knowledge of these species at the molecular, organismal, and community levels. Integration of proteomics with physiological, biochemical and other large-scale omics in the direction of the Systems Biology, will provide a comprehensive understanding of different biological processes, from growth and development to responses to biotic and abiotic stresses. As main issue we envisage that proteomics in long-living plants will thrive light on the plant responses and resilience to global climate change, contributing to climate mitigation strategies and molecular breeding programs. Proteomics not only will provide a molecular knowledge of the mechanisms of resilience to either biotic or abiotic stresses, but also will allow the identification on key gene products and its interaction. Proteomics research has also a translational character being applied to the characterization of the variability and biodiversity, as well as to wood and non-wood derived products, traceability, allergen and bioactive peptides identification, among others. Even thought, the full potential of proteomics is far from being fully exploited in forest tree research, with PTMs and interactomics being reserved to plant model systems. The most outstanding achievements in forest tree proteomics in the last decade as well as prospects are discussed.

18.
Front Mol Biosci ; 10: 1242943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905231

RESUMO

The holm oak (Quercus ilex subsp. ballota) is the most representative species of the Mediterranean Basin and the agrosylvopastoral Spanish "dehesa" ecosystem. Being part of our life, culture, and subsistence since ancient times, it has significant environmental and economic importance. More recently, there has been a renewed interest in using the Q. ilex acorn as a functional food due to its nutritional and nutraceutical properties. However, the holm oak and its related ecosystems are threatened by different factors, with oak decline syndrome and climate change being the most worrying in the short and medium term. Breeding programs informed by the selection of elite genotypes seem to be the most plausible biotechnological solution to rescue populations under threat. To achieve this and other downstream analyses, we need a high-quality and well-annotated Q. ilex reference genome. Here, we introduce the first draft genome assembly of Q. ilex using long-read sequencing (PacBio). The assembled nuclear haploid genome had 530 contigs totaling 842.2 Mbp (N50 = 3.3 Mbp), of which 448.7 Mb (53%) were repetitive sequences. We annotated 39,443 protein-coding genes of which 94.80% were complete and single-copy genes. Phylogenetic analyses showed no evidence of a recent whole-genome duplication, and high synteny of the 12 chromosomes between Q. ilex and Quercus lobata and between Q. ilex and Quercus robur. The chloroplast genome size was 142.3 Kbp with 149 protein-coding genes successfully annotated. This first draft should allow for the validation of omics data as well as the identification and functional annotation of genes related to phenotypes of interest such as those associated with resilience against oak decline syndrome and climate change and higher acorn productivity and nutraceutical value.

19.
J Proteome Res ; 11(1): 3-16, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22085090

RESUMO

Phytopathogenic fungi are one of the most damaging plant parasitic organisms, and can cause serious diseases and important yield losses in crops. The study of the biology of these microorganisms and the interaction with their hosts has experienced great advances in recent years due to the development of moderm, holistic and high-throughput -omic techniques, together with the increasing number of genome sequencing projects and the development of mutants and reverse genetics tools. We highlight among these -omic techniques the importance of proteomics, which has become a relevant tool in plant-fungus pathosystem research. Proteomics intends to identify gene products with a key role in pathogenicity and virulence. These studies would help in the search of key protein targets and in the development of agrochemicals, which may open new ways for crop disease diagnosis and protection. In this review, we made an overview on the contribution of proteomics to the knowledge of life cycle, infection mechanisms, and virulence of the plant pathogenic fungi. Data from current, innovative literature, according to both methodological and experimental systems, were summarized and discussed. Specific sections were devoted to the most studied fungal phytopathogens: Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium graminearum.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Doenças das Plantas/microbiologia , Proteoma/metabolismo , Cromatografia Líquida , Produtos Agrícolas/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Fungos/metabolismo , Proteoma/química , Proteoma/isolamento & purificação , Proteômica , Espectrometria de Massas em Tandem
20.
Planta ; 236(5): 1599-613, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843243

RESUMO

Proteomics analysis has been performed in leaf tissue from field date palm trees showing the brittle leaf disease (BLD) or maladie des feuilles cassantes, the main causal agent of the date palm decline in south Tunisia. To study the evolution of the disease, proteins from healthy and affected leaves taken at three disease stages (S1, S2 and S3) were trichloroacetic acid acetone extracted and subjected to two-dimensional gel electrophoresis (5-8 pH range). Statistical analysis showed that the protein abundance profile is different enough to differentiate the affected leaves from the healthy ones. Fifty-eight variable spots were successfully identified by matrix-assisted laser desorption ionization time of flight, 60 % of which corresponded to chloroplastic ones being involved in the photosynthesis electronic chain and ATP synthesis, metabolic pathways implicated in the balance of the energy, and proteases. Changes in the proteome start at early disease stage (S1), and are greatest at S2. In addition to the degradation of the ribulose-1.5-bisphosphate carboxylase oxygenase in affected leaflets, proteins belonging to the photosynthesis electronic chain and ATP synthesis decreased following the disease, reinforcing the relationship between BLD and manganese deficiency. The manganese-stabilizing proteins 33 kDa, identified in the present work, can be considered as protein biomarkers of the disease, especially at early disease step.


Assuntos
Arecaceae/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Biomarcadores/metabolismo , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Manganês/metabolismo , Doenças das Plantas , Proteínas de Plantas/análise , Proteômica/métodos , Ribulose-Bifosfato Carboxilase/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA